A Forest Sector Model for the Region Baden-Wuerttemberg in Germany

BW-GLOBAL-FOR

Dr. agr. Wolfgang Britz
Institute for Food and Resource Economics
Rheinische Friedrich-Wilhelms-University
Bonn, Germany

Associate Prof. Matthias Dees

&

Presenter: Juliana I. Walkiewicz
Chair of Remote Sensing and Landscape Information Systems - FeLis
Albert-Ludwigs-University
Freiburg, Germany

Bioenergy from Forest 2014
Helsinki, Finland
September 15-18, 2014
Clusterinitiative
Forst & Holz Baden Wuerttemberg

• Common initiative of stakeholders and public administrative:
 – Reflects importance of forestry and wood processing industry in Baden-Wuerttemberg, Germany, economically, but also from a land use, environmental and rural development perspective
 – Foster networking of enterprises and collaboration between enterprises and research institutions...
 – ...to benefit from opportunities of emerging bio-economy, e.g. increased use of wood chips for heating...
 – ...and to increase competitiveness
• Analyses effects of market and policy changes on forestry and related industries in Baden Wuerttemberg...

• ... but reflects link to national and global markets for wood and wood based products

• Bio-economic, partial equilibrium model
 • Recursive-dynamic, yearly steps
 • Perfect competition, imperfect foresight
 • Production, Consumption, Bi-lateral trade, Prices
 • Calibrated against medium-term baseline (2030)
BW-GLOBAL-FOR
Spatial resolution
1990 – 2010

• Germany/ BW: German federal forest Inventory
• EUROPE: UNECE/FAO Forest & Timber statistics
• World: Global FAO Forest statistics

• Production
• Demand
• Export, import (bi-laterally)
• Harvest quantity
• Forest ownership
• Assortments
• Forest area
• Growth rates
• Production shares
• Import and export unit values as price source
BW-GLOBAL-FOR
General structure
BW-GLOBAL-FOR

Harvest intensity

- Harvested quantity
- Desired long-time harvest rate

Realized price = Expected price

Realized price < Expected price
Realized price > Expected price
• Simulation based on Armington approach
 – Relaxing assumption of trading homogenous goods
 • Aggregated commodities as imperfect substitutes (tropical woods compared to temperate zone ones, different processing qualities) => law of one price does not hold
 • Allows for bi-lateral gross-trade, smooth reaction of import shares to price changes

• Spatial equilibrium concept applied inside Germany:
 – Homogenous goods
 – Price differences driven by transport cost
 – Can alternatively also be used globally
Functional forms and Parameterization

• **Supply**: double log, plus CET (distribution to different wood parts), plus harvest intensity equations (only Europe)

• **Demand**: double log plus CES (share of different wood parts)

• Magnitude of parameters taken from similar models / studies, further literature work ongoing, not yet own econometric work
• Simple polynomial long-term trends of prices (supply, demand, trade flows, prices ...) as a priori

• Model structure as “data information“ (closed market balances reflecting bi-lateral trade, dynamics in supply, optionally: spatial arbitrage condition for prices)

• Introduction of shock in order to analyze the models reaction due to its mechanisms regarding structure and parameterization
Model plausibility and stability

- Preliminary counterfactual run: 5% yearly increment of standing forest
- Resulting model response to shock:

<table>
<thead>
<tr>
<th></th>
<th>Prices:</th>
<th>Import:</th>
<th>Domestic sales:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BW</td>
<td>GER</td>
<td>World</td>
</tr>
<tr>
<td></td>
<td>↓ 30-50%</td>
<td>↓ 5-10%</td>
<td>~ 0%</td>
</tr>
<tr>
<td></td>
<td>BW</td>
<td>GER</td>
<td>World</td>
</tr>
<tr>
<td></td>
<td>↓ 35-55%</td>
<td>↓ 5-12%</td>
<td>~ 0%</td>
</tr>
<tr>
<td></td>
<td>BW</td>
<td>GER</td>
<td>World</td>
</tr>
<tr>
<td></td>
<td>↑ 25-70%</td>
<td>↑ 5-10%</td>
<td>~ 0%</td>
</tr>
</tbody>
</table>
• Data transformations, reference run, calibration, simulation implemented in GAMS (General Algebraic Modelling System)

• Simulation model as Mixed Complementarity Problem (MCP) solved with PATH

• Design of Experiments for sensitivity experiments in R combined with parallel execution of model runs

• Java based Graphical User Interface for model steering and result exploitation (tables, graphs)
BW-GLOBAL-FOR
Summary and Outlook

• BW-GLOBAL-FOR:
 – Complements the few existing (global) forest models with different methodologies (e.g. Armington, CES/CET, MCP, large-scale sensitivity analysis)
 – Prototype version operational

• Next steps:
 – Incorporate regional data for Baden-Württemberg
 – Improve reference run and parameterization
 – Implementation of specific policy instruments
 – Apply BW-GLOBAL-FOR for scenario analysis
 • i.e. FSC certification of public forests in BW
Thank you for your attention!