Modeling
Agri-Environmental Interactions
for Policy Analysis

Wolfgang Britz
Institute for Food and Resource Economics, University Bonn

Model based Policy Analysis
in memoriam Prof. Dr. Wilhelm Henrichsmeyer
GEWISOLA Jahrestagung 2010
Background: Interactions between agriculture and the environment

Tools:
- Bio-Economic Modelling
- Regional / Farm Type aggregate programming models
- National / Global land use models
- Global market models with environmental satellites
- Spatial down-scaling and post modelling processing

Pros and cons, challenges of combined tool usage

Summary and conclusions
Some words of caution:

- Presentation due to “surprise effect” based on own research agenda and not on systematic literature review
- Research field certainly broader, but cannot be covered in sufficient detail in one presentation
- Bio-physical components without behavioral model excluded if not directly linked to economic tools
- Certain “Henrichsmeyer” bias by focusing on approaches covering all agricultural activities and including market feedbacks
Growing awareness of limited global resources (soil, water, fossil energy, bio-diversity and habitat loss)

Agriculture, despite small GDP share in developed nations, still a dominating land use activity, with important positive and negative environmental externalities

Interaction between (fossil) energy markets and agriculture, contribution of agriculture to climate change and its mitigation

⇒ Agricultural, energy and environmental policies interact
⇒ Need for quantitative impact assessment (tools)
Agri-Environmental Interactions

Earth
- Global Warming
- Biodiversity and habitat loss
- Fossil energy use/substitution

Soil
- Degradation
- Erosion
- Salinisation

Water
- Removal
- Eutrophication
- Nitrates
- Pesticides

Air
- Ammonia
- Acidification

Agriculture
- Typical example: FFSIM in SEAMLESS (Louhichi et.al. 2010)
- (N)LP based programming models with exogenous prices
- Risk behaviour can be integrated
- Highly detailed technology description, covering variants of relevant processes such as tillage, including not adopted ones
- Distinction by soil types, farming system etc.
- Parameterization partly based on simulations with crop-growth models
- Many applied in case-studies (data availability, resources needed for parameterization/calibration/validation)
Advantages

- Resource specificity (soil, climate, farm endowments)
- Excellent interfacing to agri-environmental policy instruments (opt-in measures, taxes, regulatory approaches)
- Rich set of environment related results from crop growth models

Dis-advantages

- Often rather normative – necessary observations for calibration/validation scarce
- Expensive survey based data acquisition
- Generalization of results challenging
- Missing price feedback
Regional/Farm type Programming Models

- Typical examples: RAUMIS (Henrichsmeyer et.al. 1996)
- Sub-national resolution based on administrative regions
- Calibrated to observed farming practise, based on Positive Mathematical Programming and extensions
- Cover all of agriculture (Economic Accounts for Agriculture, Land use, Herds)
- Some major environmental processes/indicators e.g. N/P/K balancing, GHG emissions integrated as constraints
Advantages

- Key farm practise data such as crop areas, herd sizes & yields readily available from official statistics as time series
- Typically higher resource specificity and improved description of farm level processes compared to market level models

Dis-advantages

- Less technological detail and resource specificity compared to Bio-Economic modelling, regions assumed to be homogenous
- Input allocation to processes/regions challenging and labour intensive due to data limitations
- Missing price feedback
- Typical example: GLOBIOM (Havlik et al. 2008)
- Builds on FASOM (Adams et al. 1996) model family: LP based supply, spatial, endogenous prices via welfare maximisation, recursive-dynamic, agriculture and forestry covered
- Land and water as fixed resources
- Sourced by EPIC

Homogenous response units underlying GLOBIOM, Skalský et al. (2008)
Advantages:

- Some resource specificity combined with global coverage
- Major competing land uses included
- Link to bio-physical model allows e.g. to capture mitigation options for CO2 (equivalents)

Dis-advantages:

- Only own-price demand elasticities
- Parameterization, calibration/validation
- Higher spatial resolutions lead to very large LP frameworks (solution time, debugging, quality control)
Extensions of existing (market) models with new endogenous modules

Examples:
- Integration of a land-use module in GTAP (GTAP-AEZ, Lee 2005)
- Integration of 126 river basins in IMPACT (IMPACT-Water Rosegrant et.al. 2008)

Advantages:
- Global perspective
- Market feedback

Dis-advantages:
- Highly stylized technology and policy description
- Regional aggregation quite high
Spatial downscaling

- Examples: Land-Use Cover Change (LUCC) modelling (e.g. Verburg and Overmars 2009), CAPRI-Dynaspat (Leip et.al. 2008)

- General approach:
 - Estimate quantitative relations between local factors (soil, climate, topography, existing land cover) and land use resp. agricultural management (crop shares, stocking densities, yields, input use)
 - Dis-aggregate given results on higher regional scale based on estimated relations

Example from CAPRI-Dynaspat: Ruminants in livestock units per ha fodder area, France, 2001-2003
Spatial downscaling

- **Advantages:**
 - Economic models operate on established regional scale (data availability, estimation of behavioural parameters, response time, model size and complexity)
 - Independent down-scaling tool can apply different methodology (e.g. cellular automaton) and software
 - Serves as input into bio-physical models, e.g. FATE (Baraoui and Grizetti 2008, CAPRI-DNDC link (Leip et.al. 2008))

- **Disadvantages:**
 - Post-model step – indicator calculators and underlying processes are not integrated in economic models
 - Linked bio-physical models may contradict aggregate relationships in economic models
For any policy instrument where aggregate perspective matters (price feedback, indirect land use change, GE):

- Tension between required level of detail to capture environmental impacts and policy instruments – spatial resolution, process detail – and enormous data and processing need
- Stand-alone use of one specific tool often not promising – tools with the required detail are not sufficiently encompassing, global tools (PE or GE) can hardly be dis-aggregated to appropriate scale

⇒ Increasing interest in combined tool use
⇒ Large-scale EU framework projects (SEAMLESS, SENSOR)
Exploit **comparative advantages** by **combining** tools, e.g.

- Integration of bio-economic or regional models with market models to allow for price feedback while keeping technological detail and spatial resolution
- Integration of land-use models with agricultural/forestry models to capture land-use dynamics
- Combination of agricultural and bio-physical models for detailed impact assessment, e.g. on different N-Compartments

=> Major research question: how to ensure matching response e.g. to price/policy changes in different tools?
Improved consistency in combined tool use:

- **Sequential calibration:**
 - Models updated and solved iteratively till convergence (CAPRI e.g. Britz 2008, Jansson et.al. 2009 for CAPRI and GTAP)

- **Response surfaces:**
 - Britz & Hertel 2009 linking CAPRI supply models and GTAP
 - Perez et.al. 2010 extrapolate supply response from bio-economic models FFSIM to regional scale, Adenäuer et.al. calibrate CAPRI regional models to the upscaled response of FFSIM
Example for top-down model chain

Global market models (e.g. GTAP/CAPRI)

Regional economic models (e.g. CAPRI, RAUMIS)

Total agricultural land at region level

Broad land use classes

Region land use per crop

Spatial downscaling of agricultural practice (e.g. CAPRI Dynaspat)

National/regional LUCC e.g. CLUE

Global LUCC e.g. IMAGE

Globe Nation

Region

Landscape

Britz: Modelling Agri-Environmental Interactions for Policy Analysis
Modelling agri-environmental interactions:

- currently a **dynamic scientific field** which competing approaches
- requires data and tools capturing relevant **farm management processes** (tillage, fertilizing and irrigation practise, use of pesticides ..)
- remains **challenging**, especially if tools operating at appropriate spatial / temporal / process resolution are combined with global models
Future research

- Weakly covered bits such as appropriate indicators for bio-diversity or landscape assessment
- Robust behavioural models for
 - Participation rates for opt-in measures or cheating rates
 - Adaption of new farm management practises
- Appropriate communication of multiple indicators and multiple scales (space, time) – upscaling, indices, choice of social discount rates?
- How to deal with uncertainty and stochastics, e.g. the question of possible catastrophic events?
Thanks for your attention!

Gocht A. and Britz W. (2010). EU wide farm types supply in CAPRI- how to consistently disaggregate sector models into farm type models, Paper presented at GeWiSoLa 2010

Gömann et.al., Beschreibung des Regionalisierten Agrar- und Umweltinformationssystems RAUMIS, vTI, Institut für Ländliche Räume, Braunschweig

Havlik et.al. (2008)- GLOBIOM - Global Biomass Optimization Model: Biofuels and Land Use Change. RSB – Biofuels and Land Use Change, November 21, 2008, São Paulo, Brazil

Henrichsmeyer, W. et.al. (1996): Entwicklung eines gesamtdeutschen Agrarsektormodells RAUMIS96. Endbericht zum Kooperationsprojekt. Forschungsbericht für das BML (94 HS 021)

