CGEBox — a flexible and modular toolkit for CGE modelling with a GUI

- Wolfgang Britz, Institute for Food Resource Economics –
- November 2019 -

(matches rev. 2165 of https://svn1.agp.uni-bonn.de/svn/cgebox)

Content

1. Introduction ... 8
 1.1 How the documentation is organized ... 8
 1.2 Why an implementation in GAMS? .. 8
 1.3 Scalability, Modularity and Extensions as basic features of CGEBOX .. 9

2. Basic model equations .. 14
 2.1 Core sets ... 14
 2.2 Reminder on CES and CET equations ... 15
 2.3 Overview on the supply side ... 16
 2.4 Production block ... 18
 2.5 Factor markets ... 24
 2.6 Income generation and distribution - overview .. 26
 2.7 Income generation ... 27
 2.8 Income distribution .. 29
 2.9 Household consumption .. 30
 2.9.1 CDE case ... 30
 2.9.2 LES or CD case .. 31
 2.10 Government consumption ... 32
 2.11 Investments and savings .. 34
 2.11.1 Global bank .. 35
 2.11.2 Fixed allocation of foreign savings .. 37
 2.11.3 Capital account and balance of payments ... 38
 2.12 Demand sub-nests ... 38
 2.13 International trade and domestic sales, and related prices ... 40
 2.13.1 Overview ... 40
 2.13.2 Individual equations ... 41
 2.13.3 Melitz model ... 46
 2.14 Price indices .. 51
How the documentation is organized

2.15 List of main prices in model ... 52
2.16 Flexible nesting .. 53
3. Modules .. 58
 3.1 myGTAP module ... 58
 3.1.1 Summary .. 58
 3.1.2 Motivation .. 59
 3.1.3 Implementation .. 59
 3.1.1 Methodology: Household demand ... 64
 3.1.2 Graphical User Interface ... 70
 3.1.3 Code implementation ... 74
 3.1.4 Integration FAO household data into CGEBOX 77
 3.1.5 Post-model micro-simulation .. 90
 3.1.6 References ... 97
 3.2 A GMIG module for CGEBox .. 98
 3.2.1 Background and motivation ... 98
 3.2.2 Equations .. 98
 3.2.3 Technical aspects ... 100
 3.2.4 Result exploitation .. 100
 3.2.5 References .. 101
 3.3 Sub-regional dis-aggregation of production and factor markets in CGEBox ... 101
 3.3.1 Background and motivation ... 101
 3.3.2 Methodology .. 101
 3.3.3 Integration into the modeling framework 101
 3.3.4 Implementation for European countries at NUTS2 level 103
 3.3.5 Result exploitation .. 105
 3.3.6 References .. 106
 3.4 MRIO extension ... 107
 3.4.1 Background .. 107
 3.4.2 Definition of consistent split factors ... 107
 3.4.3 Derivation of the split factors .. 109
 3.4.4 Model equations ... 109
 3.4.5 Graphical User Interface ... 110
 3.5 Partial equilibrium closure .. 112
 3.6 Tariff Line Module .. 113
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.1</td>
<td>Summary</td>
<td>113</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Background</td>
<td>113</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Approach</td>
<td>113</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Model equations</td>
<td>114</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Entering the data</td>
<td>116</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Calibration</td>
<td>117</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Post model processing</td>
<td>118</td>
</tr>
<tr>
<td>3.6.8</td>
<td>Integration in the GUI</td>
<td>118</td>
</tr>
<tr>
<td>3.6.9</td>
<td>References</td>
<td>119</td>
</tr>
<tr>
<td>3.7</td>
<td>CO2 and Non-CO2 Accounting</td>
<td>120</td>
</tr>
<tr>
<td>3.8</td>
<td>GTAP-E</td>
<td>120</td>
</tr>
<tr>
<td>3.9</td>
<td>GTAP-AGR</td>
<td>120</td>
</tr>
<tr>
<td>3.10</td>
<td>G-RDEM: Long-term baseline generation and analysis</td>
<td>122</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Summary</td>
<td>122</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Background and introduction</td>
<td>122</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Overview</td>
<td>123</td>
</tr>
<tr>
<td>3.10.4</td>
<td>An AIDADS demand system with detail for food consumption</td>
<td>124</td>
</tr>
<tr>
<td>3.10.5</td>
<td>Differentiated productivity growth</td>
<td>132</td>
</tr>
<tr>
<td>3.10.6</td>
<td>Endogenous saving rates</td>
<td>135</td>
</tr>
<tr>
<td>3.10.7</td>
<td>Debt accumulation from foreign savings</td>
<td>139</td>
</tr>
<tr>
<td>3.10.8</td>
<td>Cost-share adjustment</td>
<td>142</td>
</tr>
<tr>
<td>3.10.9</td>
<td>Endogenous expenditure shares for government and investment demand</td>
<td>150</td>
</tr>
<tr>
<td>3.10.10</td>
<td>Steering of G-RDEM model runs</td>
<td>152</td>
</tr>
<tr>
<td>3.10.11</td>
<td>Population and GDP growth from the IASSA SSPs</td>
<td>153</td>
</tr>
<tr>
<td>3.10.12</td>
<td>Using the G-RDEM generated baseline for counterfactual analysis</td>
<td>154</td>
</tr>
<tr>
<td>3.10.13</td>
<td>Specific nestings in G-RDEM</td>
<td>155</td>
</tr>
<tr>
<td>3.10.14</td>
<td>Endogenous non-Hicks neutral technical progress and primary factors supply</td>
<td>157</td>
</tr>
<tr>
<td>3.10.15</td>
<td>Analysis of G-RDEM simulation output (exploitation)</td>
<td>158</td>
</tr>
<tr>
<td>3.10.16</td>
<td>Computing and data base considerations for G-RDEM runs</td>
<td>160</td>
</tr>
<tr>
<td>3.11</td>
<td>GTAP-Melitz: Heterogenous firm module</td>
<td>163</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Summary</td>
<td>163</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Introduction</td>
<td>163</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Brief Literature overview</td>
<td>164</td>
</tr>
<tr>
<td>3.11.4</td>
<td>Implementation of Melitz model into CGEBox</td>
<td>165</td>
</tr>
</tbody>
</table>
3.11.5 Numerical stability and domestic industry demand for its own output 178
3.11.6 Technical implementation and an example application 178
3.11.7 Conclusion .. 183
3.11.8 Acknowledgments ... 184
3.11.9 References ... 184
3.12 GTAP-AEZ .. 187
 3.12.1 Summary .. 187
 3.12.2 Model equations .. 188
 3.12.3 Parameterization .. 194
 3.12.4 Visualization of GTAP-AEZ results ... 195
4. Data base generation ... 197
 4.1 Simple deletion .. 198
 4.2 Rebalancing ... 198
 4.2.1 Equations in the re-balancing program ... 200
 4.2.2 Overall solution logic .. 201
 4.2.3 Special treatment for specific regions and sectors 206
 4.2.1 Technical aspects .. 206
 4.3 Split utility .. 207
 4.3.1 A complex example for a split .. 208
 4.3.2 Balancing equations and objective function .. 210
 4.3.3 Preparation of the split factors .. 214
 4.3.4 Solution process ... 214
 4.3.5 Processing the solution ... 216
 4.4 MRIO split .. 218
 4.5 Post-aggregation of GTAPagg to yield non-diagonal make matrices 218
 4.5.1 Model size and solution behavior ... 219
 4.6 Inspecting the resulting data base .. 222
 4.7 Pre- or post-model aggregation ... 223
5. Scenario runs .. 225
 5.1 Defining the scenario ... 225
 5.1.1 Implementation of shock files in GAMS ... 225
 5.1.2 Scenario editor .. 228
 5.2 Running the scenario ... 232
 5.3 Output options ... 235
CGEBox – a flexible and modular toolkit for CGE modelling in GAMS

5.4 Model structure, parameterization and factor markets ... 236
5.4.1 Modules and parameters ... 236
5.4.2 Demand system ... 237
5.5 Factors ... 237
5.6 Parameters and indices .. 238
5.6.1 Indices ... 238
5.6.2 Scenario drivers ... 238
5.6.1 Parameters .. 239
5.7 Closures .. 240
5.8 MRIO extension .. 241
5.9 Imperfect competition model .. 242
5.10 Pre-configurations ... 243
5.10.1 Standard GTAP model ... 243
5.10.2 GTAPinGAMS ... 243
5.10.3 GLOBE ... 243
5.10.4 MIRAGE ... 244
5.10.5 ENVISAGE ... 244
5.10.6 CGEBOX ... 244
5.10.7 CGEBOX+ ... 244
5.11 Algorithm ... 244
5.12 GAMS .. 247
5.13 Pre-solves ... 248
6. Post-model processing ... 252
6.1 Decomposing welfare changes in CGEBox ... 252
6.1.1 Background .. 252
6.1.2 Decomposition with regard to overall price indices and income components ... 252
6.1.3 Decomposition with a focus on prices in changes 254
6.1.4 Demand nests .. 254
6.1.5 Private household ... 254
6.1.6 Government and investments ... 256
6.1.7 Utility change for the regional household and EV 256
6.1.8 Decomposition following Huff and Hertel, 2000 258
6.2 Trade in VA indicators ... 261
6.2.1 Background .. 261
How the documentation is organized

6.2.2 Post-Model processing.. 262
6.2.3 GUI.. 263
6.3 Altertax... 265
 6.3.1 Background .. 265
 6.3.2 Technical realization .. 265
 6.3.3 Pre-configuration ... 266
 6.3.4 Post-Model processing ... 266
 6.3.5 Use of the updated benchmark .. 267
6.4 Linking the physical MRIO for agricultural and food products FABIO to CGEBox 268
 6.4.1 Introduction .. 268
 6.4.2 Overview on FABIO .. 268
 6.4.3 Methodology .. 269
 6.4.4 Introduction .. 269
 6.4.5 Split ... 270
 6.4.6 Post-model dis-aggregation ... 274
 6.4.7 Nutrition indicators ... 278
7. GUI and installation .. 281
 7.1 Software requirements and access to the code 281
 7.2 Some comments for runGTAP and GEMPACK users 281
 7.3 Background .. 282
 7.4 SVN checkout ... 283
 7.5 Starting the GUI .. 286
 7.6 First steps .. 288
 7.7 Making the interface working with GAMS .. 290
 7.8 Inspecting the results ... 294
 7.8.1 Notes for GEMPACK users or users familiar with other CGE models 296
 7.8.2 Relative difference for all variables as in runGTAP 297
 7.8.3 Trouble shooting with the viewer .. 299
 7.8.4 Overview on existing views for exploitation 300
8. Sensitivity analysis .. 309
 8.1 Controls for sensitivity experiments.. 310
 8.2 Parallel solves and analyzing the results .. 315
9. Getting an overview on the code .. 320
 9.1 HTML documentation ... 320
9.2 Equation and variable viewer (similar AnalyzeGE) .. 322
9.3 Technical documentation ... 325
 9.3.1 Overview on directory structure .. 325
 9.3.2 GUI overview ... 325
 9.3.3 Processes .. 326
 9.3.4 Post-model processing .. 327
 9.3.5 Substitution of variables based on macros .. 329
 9.3.6 Exploitation and flexible aggregation ... 331
 9.3.7 Main programs when solving a shock and integration of modules 334
10. References .. 336
1. Introduction

1.1 How the documentation is organized

This document provides both the methodology of CGEBox – including an equation by equation description of the GTAP standard model as implemented in here and of the different optional modules – as well as its technical documentation and details how to use the Graphical User Interface (GUI) and of to introduce specific data or shocks. The GTAP standard model and each module each have their own sections, these sections start with an introduction to the methodology, next detail the equations and the implementation in GAMS, followed (where applicable) by sub-sections on how to introduce additional data and on GUI choices and result exploitation.

Users who want to start using the basic model without having a look at details are invited to read the following two sections “Why an implementation in GAMS?” and “Scalability, Modularity and Extensions as basic features of CGEBOX” up to page 14 as an introduction, skip the following detailed sections first and continue with the section “GUI and installation”, page 281 ff.

1.2 Why an implementation in GAMS?

GTAP is certainly the far most widespread international data base for CGE modeling. The data base was for years only distributed with a default CGE model template in GEMPACK, called the standard GTAP model, as well as with many useful GEMPACK based utilities. GEMPACK as a special package for CGEs has certainly distinct advantages compared to less specialized algebraic modeling languages. Some users might however prefer GAMS when working with GTAP. Some features of GAMS not available with GEMPACK are used in CGEBox, such as being able to solve (several) constrained non-linear equation systems not written in their FOC in one program call, for instance to filter small entries from the global SAM and rebalancing it afterwards, see section “Rebalancing”, or when applying the split utility, see section “Split utility”.

Indeed, outside the CGE community, GAMS seems much more common than GEMPACK as an Algebraic Modelling Language, e.g. in Agricultural Economics (Britz and Kallrath 2012). In 2015, the Center for Global Trade Analysis (GTAP) decided to release in parallel to the standard GTAP model in GEMPACK a version coded in GAMS, now available for GTAP Standard Version 7 (can der Mensbrugghe 2018). Intensive testing showed that both versions produce the same results. The GAMS equations of that core model plus some extensions are discussed below in the section “Basic model equations”. These equations are mostly structurally identical to van der Mensbrugghe 20181 to which this documentation refers where applicable, while mnemonics and coding style are to a large degree harmonized as well. Further CGE models realized in GAMS sharing basic elements of the standard GTAP model while adding extensions in several directions are widely available, for instance GTAPinGAMS by Tom Rutherford, GLOBE by Scott McDonald and Karen Thierfelder or ENVISAGE by Dominique van der Mensbrugghe. However, these models do not provide an exact replication of the standard GTAP Model.

The newly released replica of the standard GTAP model version 7 in GAMS comprised in CGEBox is not only interesting for research, but also provides together with the GTAP data base an excellent starting point either for teaching or own projects of students, especially in the context of course

programs already using GAMS. CGEBox offers additionally some extensions compared to the standard GTAP model as discussed next, inspired by features of existing CGEs, and adds modules such as myGTAP, GMIG, GTAP-AEZ, GTAP-AGR, GTAP-E or GTAP-HET detailed in dedicated sections of this documentation. Furthermore, CGEBox offers a choice for certain structural elements such as with regard to the functional form in final demand or the aggregation of the Armington agents. The combination of the extensions and modules along with such flexibility allow adjusting the model’s structure to a specific application or to replicate main layout features of well-known models (see Britz and van der Mensbrugghe 2018). The model documentation is structured as follows. The following section “Scalability, Modularity and Extensions as basic features of CGEBOX” discusses the main features of the modeling platform including a brief overview on the different modules. The structure of the core model is discussed equation by equation in the section “Basic model equations” (page 14ff). The following section “Modules” (pages 58ff) discusses the methodological and technical details of the individual modules. It is followed by a block dealing with generating the data base of the model (“Data base generation”, pages 197ff) with issues such as filtering the global SAM or the split utility before a section on running the model (“Scenario runs”, pages 225 ff). Next, post-model processing is detailed: with the sub-section on “Decomposing welfare changes in CGEBox”, “Trade in VA indicators”, the discussion of the “Altemtax” utility and “Linking the physical MRIO for agricultural and food products FABIO to CGEBox”. Afterwards, the use of the Graphical User Interface is presented in the section “GUI overview” (pages 281ff). It discusses step-by-step how to install the model, construct a data base, define the shock, run the model and analyze results. A further section details the use of an extension on sensitivity analysis (“Sensitivity analysis”, pages 309ff), before section “Getting an overview on the code” (pages 320 ff) discusses some technical aspects. Some training videos are available at http://www.ilr.uni-bonn.de/em/rsrch/cgebox/cgebox_e.htm#vid — they might differ however in selected details as the Graphical User Interface was improved since their recording.

1.3 Scalability, Modularity and Extensions as basic features of CGEBOX

As the standard GTAP model and many of its variants, CGEBox is highly scalable in the sense that it can work with differently sized, but identically structured data bases which differ in the lists of regions, commodities, sectors and factors. However, increasing the detail of the data base can quickly lead to models which are hard or even impossible to solve. The modeling platform offers several options to work with large-scale data bases. Firstly, a filter algorithm (see section “Rebalancing”, page 198ff) can systematically remove out tiny elements from the global SAM and afterwards rebalances it. Second, the GAMS code comprises a pre-solve algorithm which should speed up solution of larger models with more than 300,000 non-empty transactions in the global SAM (see section “Pre-solves”, pages 248ff). The code was intensively tested for numerical stability and acceptable solution time when applied to more dis-aggregated versions of the GTAP data base (Britz et al. 2015, Britz and Van der Mensbrugghe 2016). Third, certain extensions such as the possibility to use as in GLOBE the same import and domestic shares for all Armington agents can reduce the number of variables and equations and, finally, the model allows to substitute out many variables from the system which otherwise drive up model size.

CGEBox includes and supports extensions beyond the GTAP standard model. Using these extensions is partly driven by the underlying SAM structure, such as allowing for a multi-product make matrix to support non-diagonal relations between production activities and commodities consumed. Other extensions are switched on depending on the parameterization of the system, such as allowing for non-infinite CET between domestic sales and exports, and between export flows. Similarly, non-diagonal make matrices can be applied in conjunction with a CET nest to steer output composition of multi-output sectors and a CES nest to determine consumption shares in case several sectors produce the same commodity. Many of these extensions are inherited from ENVISAGE, however not all ENVISAGE features are found in the code. The code also supports already a range of different closures e.g. for foreign savings, private and government consumption which can be complemented by closures files provided by the user. Equally, different regional numeraires can be used.

Furthermore, the code structure has a modular design which facilitates introduction of new model features to the GAMS code\(^3\). So far, implementations of GTAP-AGR (see section “GTAP-AGR”, page 120ff), GTAP-E (see section “120”, page 120), GTAP-AEZ (see section “GTAP-AEZ”, page 187ff), myGTAP (see section “myGTAP module”, page 58ff) and CO2 emissions accounting and taxation (see section “CO2 and Non-CO2 Accounting”, page 120ff) are available as additional modules, along with an implementation of a Melitz model (GTAP-HET, see section “GTAP-Melitz: Heterogenous firm module”, page 122ff) and a MRIO split up of bi-lateral import demand by total intermediate consumption and the final demand agents, (see section “MRIO extension”, page 107ff).

The options for international trade can be combined with different agent aggregations in the Armington nests and with a module which dis-aggregates selected bi-lateral trade flows to the tariff line (see “Tariff Line Module”, page 113ff). The G-RDEM (GTAP based Recursive-Dynamics Model) is available as a module in CGEBox for long-term baseline generation and analysis as well (see section “G-RDEM: Long-term baseline generation and analysis”, page 122 ff.). Additionally, the production functions and factor markets for EU countries can be broken down to sub-regional regions, e.g. to 280 so-called administrative NUTS2 regions for the EU (see section Sub-regional disaggregation of production and factor markets in CGEBox, page 98ff).

Extensions derived from GTAP-variants are mostly not set-up as a perfect replica of the GEMPACK implementations and not tested for replication of results obtained with the corresponding GEMPACK code. Examples of how these extensions and modules can be used to generate from the same code models with quite different features offer the pre-defined configurations, see section “Pre-configurations”, pages 243ff. The code supports currently GTAP6 to GTAP9 data bases with matching land use data for 2007 and 2011 and allows using the GTAP9-Water data set. The “Split utility” (pages 207ff) can be used in conjunction with the FABIO MRIO (see section “Linking the physical MRIO for agricultural and food products FABIO to CGEBox”, pages 268ff) to add agri-food detail to the GTAP SAMs. There are some specific extensions for post-model analysis: Trade in Value Added indicators (see section “Trade in VA indicators”, pages 261ff), decomposition of welfare changes (see section “Decomposing welfare changes in CGEBox”, pages 252ff) and lastly, providing detail for

\(^3\) The code makes a differentiation between extensions which change the nesting of the production function or introduce nested CET structures for factor supply. These extensions only require set-definitions and substitution respectively transformation elasticities, but no changes in the equation structure of the model or is post-processing. In opposite to that, the implementation of what is called a module consists typically of two files: one file which declares the additional symbols (parameters, variables, equations), these includes are found in “model.gms”, and a file which calibrates the related parameters for the benchmark, these includes are found in “cal.gms”. Potentially, there are also additional statements in the post-model reporting part.
agriculture and food including nutritional indicators based on the FABIO MRIO (see section “Linking the physical MRIO for agricultural and food products FABIO to CGEBox”, pages 268ff). The model can also, similar to the Altertax utility (see section “Altertax”, pages 265ff), derive a global SAM and other parameters from a simulated shock which can be used as starting point for another run.

An important feature of the model’s structure are sets of equations which allow the introduction of CES-nests comprised of factors, intermediates demand and sub-nests such that even complex nestings in the production function can be introduced via cross-set definitions without additional programming work in the model’s code. A similar generic implementation is provided for factor supply based on nested CET-functions and for CES sub-nests under final demand. In all three cases, the post-model processing and reporting part reflects these nesting as well. These features are discussed below in more detail in the section “Flexible nesting”, pages 53ff.

The basic application mode of the model, according to the GTAP standard model, is that of a comparative-static global model of a barter economy, i.e. with fixed exchange rates. Alternatively, the model can also be run in recursive-dynamic fashion and in that case combined with the features of “G-RDEM: Long-term baseline generation and analysis”, pages 122ff. Equally, a single regional model can be directly derived from the equation system, and the single region to run can be selected by the GUI. The code and GUI also support deriving a partial equilibrium model where prices for some commodities and related intermediate and factor demand of the activities procuding these commodities are fixed along with total income and the model is solved for the remaining endogenous commodity markets.

Use of the options, extensions and modules discussed above does not require additional coding efforts; they can be directly activated from the interface or by using non-default parameter files. The set-up of the code should render it relatively straightforward to implement additional modules in a modular fashion. It should be noted here that the module are to a large extent inter-operable, which allows setting up a model with captures simultaneously the features of GTAP-AGR, GTAP-AEZ and GTAP-E, treats some sectors a la Melitz, uses different household types etc. Data input for the model is based on GTAPAGG output to which auxiliary accounts such as for land use and non-CO2 emissions can be added, along with user provided additional data and information to e.g. split sectors and commodities in the SAM or to aggregate commodities or sectors to yield non-diagonal make relation. The modeling platform is supported by a Graphical User Interface, see section “GUI”, 281ff. which also details how to install the system.

Technically, the model is set-up a constraints system of equations in levels. The equations and variables are to a largest extent paired in MCP style which also helps debugging the model especially during further developments. Due to the pairing, the model can be solved alternatively as a Mixed Complementary System (MCP) which allows exploiting features as such endogenous quota rents.

Table 1: Modules and extensions

<table>
<thead>
<tr>
<th>Module</th>
<th>Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data filter</td>
<td>Tested, not used with GEMPACK based model</td>
<td>Optionally removes small transactions from SAMS / trade matrices while maintaining closely important totals. Thought to support model applications with highly dis-aggregated data bases. Draws on code by T. Rutherford</td>
</tr>
<tr>
<td>GTAP-Standard</td>
<td>Tested for exact</td>
<td>With extensions from ENVISAGE such as non-</td>
</tr>
</tbody>
</table>
Scalability, Modularity and Extensions as basic features of CGEBOX

<table>
<thead>
<tr>
<th>Module</th>
<th>Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>replication</td>
<td></td>
<td>diagonal make matrix, CET on export side</td>
</tr>
<tr>
<td>Completely flexible nesting of production functions</td>
<td>Tested, based on set-definitions</td>
<td>Should allow to quickly generate variants of the standard GTAP model currently available which differ in nesting of factors / intermediate</td>
</tr>
<tr>
<td>Completely flexible nesting for factor supply</td>
<td>Tested, based on set-definitions</td>
<td>Should allow to quickly generate variants of the standard GTAP model currently available which use nested CET structures to describe factor supply</td>
</tr>
<tr>
<td>Completely flexible of sub-nests under final demand</td>
<td>Tested, based on set-definitions, not available for the trade margins</td>
<td>Should allow to quickly generate variants of the standard GTAP model currently available which use CES-subnests under the top-level final demand equation</td>
</tr>
<tr>
<td>LES/CD/AIDADS functions for final demand</td>
<td>Partly found in myGTAP</td>
<td>Parameters derived from CDE parameterization, respectively econometrically estimated (AIDADS)</td>
</tr>
<tr>
<td>GTAP-AEZ</td>
<td>Operational, not tested for exact replication</td>
<td>With land supply elasticities for natural land cover, differentiated by land cover, additive CET, additional CET, option to prevent shrinking of agricultural and secondary forest area</td>
</tr>
<tr>
<td>GTAP-AGR</td>
<td>Operational, not tested for exact replication</td>
<td>Applicable also to regional dis-aggregation different from original GEMPACK implementation, uses the flexible nesting approach, adjusts to sectoral detail.</td>
</tr>
<tr>
<td>GTAP-E</td>
<td>Operational, not tested for exact replication</td>
<td>Based on flexible nesting approach, adjusts to sectoral detail</td>
</tr>
<tr>
<td>GTAP-Melitz: Heterogenous firm module</td>
<td>Operational, similar to GTAP-HET</td>
<td>Includes a fixed cost nest based on the flexible nesting approach, sector coverage can be flexibly chosen. Can also be turned in a Krugman specification</td>
</tr>
<tr>
<td>MRIO extension</td>
<td>Operational</td>
<td>Differentiation of bi-lateral import demand by total intermediate demand and each final demand agent</td>
</tr>
<tr>
<td>myGTAP module</td>
<td>Operational, not tested for exact replication</td>
<td>Removes the regional household, supports multiple private households which manage their own factor stocks, can be linked to household surveys for 19 countries and post-model micro-simulation, subsistence module where households at sub-regional level consume (larger part) of own production of selected activities</td>
</tr>
<tr>
<td>GMIG</td>
<td>Operational</td>
<td>Bi-lateral migration of labour, remittances</td>
</tr>
<tr>
<td>Aggregate Armington aggregator for intermediate demand</td>
<td>Operational, not part of standard GTAP model or variants thereof available from GTAP</td>
<td>Domestic and import shares for intermediate demand and related tax rates are not sector specific, removes a large share of equations</td>
</tr>
<tr>
<td>Aggregate Armington aggregator for all</td>
<td>Operational, not part of standard GTAP model or</td>
<td>Domestic and import shares for intermediate demand and related tax rates are not agent specific, removes a large share of equations</td>
</tr>
<tr>
<td>Module</td>
<td>Status</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>agents</td>
<td>variants thereof available from GTAP, found in GLOBE</td>
<td></td>
</tr>
<tr>
<td>Third level nest for Armington / CET</td>
<td>Small shares can be treated as a Leontief under the second nest, found in GLOBE</td>
<td>Might avoids numerical problems with tiny shares</td>
</tr>
<tr>
<td>Tariff Line Module</td>
<td>Operational</td>
<td>Allows a CET/CES dis-aggregation of selected bilateral trade links including explicit TRQ mechanism</td>
</tr>
<tr>
<td>Capital vintages</td>
<td></td>
<td>Draws on similar mechanism used in recursive-dynamic CGEs which differentiate vintage from new capital</td>
</tr>
<tr>
<td>Sub-regions</td>
<td>Tested, not available in standard GTAP model</td>
<td>Breaks down production decisions and factor markets to sub-regional level, currently data available for NUTS2 administrative regions for Europe</td>
</tr>
<tr>
<td>Post-model reporting</td>
<td>Operational, EV decomposition as in GEMPACK</td>
<td>Generates SAM like structure, calculates world totals, regional and sectoral totals based on additional GTAP agg file, welfare decomposition etc., feeds into GUI exploitation tools, Trade in VA indicators, welfare decomposition, nutritional indicators, CO2 and Non-CO2 emissions relevant for climate change</td>
</tr>
<tr>
<td>Single region mode</td>
<td>Operational, not available in standard GTAP model</td>
<td>Fixes import prices and let export demand react to lower Armington nest at export destinations.</td>
</tr>
<tr>
<td>Recursive dynamic mode, G-RDEM: Long-term baseline generation and analysis</td>
<td>Operational, not tested for compliance with GDyn</td>
<td>Econometrically estimated AIDADS demand system, endogenous saving rates, differentiated productivity growth, debt accumulation from foreign savings and income dependent industry cost shares</td>
</tr>
<tr>
<td>Partial Equilibrium closure</td>
<td>Operational</td>
<td>Solves only one or some commodity markets and all factor markets, regional or household income exogenous</td>
</tr>
<tr>
<td>CO2 and Non-CO2 Accounting</td>
<td>Operational</td>
<td>Can be combined with taxation or CO2 trading permits, Non-CO2 emissions and carbon currently only post-model</td>
</tr>
</tbody>
</table>
2. Basic model equations

The basic model equations are to a large extent identical to Van der Mensbrugghe, D. (2018). “The Standard GTAP Model in GAMS”, Version 7. Journal of Global Economic Analysis, 3(1), 1-83. We refer below to the equations in that complete and excellent documentation (equation (x) in VDM 2018) and report differences were applicable. We refrain from repeating all equations in mathematical notation – the reader is invited to refer to VDM 2018. Instead, we insert screen shots of the actual code which we comment to ease understanding the technical implementation of the model.

2.1 Core sets

The equations of the basic model are comprised in the file “model.gms” and discussed in the following. The following general sets are used:

Table 2: Core sets used in model equations

<table>
<thead>
<tr>
<th>Set name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r, rp</td>
<td>Regions</td>
</tr>
<tr>
<td>rnat, nat1</td>
<td>nations (to differentiate from sub-regions in the case the NUTS2 level is active)</td>
</tr>
<tr>
<td>disr</td>
<td>Nations which are dis-aggregated to sub-regions</td>
</tr>
<tr>
<td>subr</td>
<td>sub-regions (only populated in the case the NUTS2 level is active)</td>
</tr>
<tr>
<td>aa</td>
<td>Armington agents (sectors, private household, government, savings, transport modes)</td>
</tr>
<tr>
<td>a</td>
<td>production activities</td>
</tr>
<tr>
<td>i, j, k</td>
<td>products</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>m</td>
<td>mode of transport</td>
</tr>
<tr>
<td>f</td>
<td>factors</td>
</tr>
<tr>
<td>fm</td>
<td>mobile factor (fully mobile or sluggish)</td>
</tr>
<tr>
<td>fnm</td>
<td>non-mobile factor, i.e. sector specific</td>
</tr>
<tr>
<td>h</td>
<td>households</td>
</tr>
<tr>
<td>gov</td>
<td>government (single item)</td>
</tr>
<tr>
<td>Inv</td>
<td>investment (single item)</td>
</tr>
<tr>
<td>fd</td>
<td>final demand groups, used in demand nests</td>
</tr>
<tr>
<td>dNest</td>
<td>demand nests</td>
</tr>
<tr>
<td>tNest</td>
<td>technology nests</td>
</tr>
<tr>
<td>fNest</td>
<td>factor supply nests</td>
</tr>
</tbody>
</table>

Note the lists of regions, activities, products and factors depend on the version of the GTAP data base used and the chosen aggregation. The list of demand, technology and factor supply nests is equally dynamic, depending which modules are active and/or on additional nests introduced by user provided files. The myGTAP extensions might introduce several private households in the set h which is otherwise a singleton. In the standard layout, i.e. without using the NUTS2 extensions, all regions are defined as nations and the list of dis-aggregated regions disr is empty.
As the model might run as a single region or as a partial equilibrium model or recursive dynamically, dynamic sets are used to indicate for which regions, product, activities and time points the equations in the current model instance should be generated:

- **rs**: regions in current solve
- **ts**: time point in current solve
- **aIn**: activities in current model
- **iIn**: products in current model

Furthermore, to support sparsity, i.e. to avoid that equations and variables are only generated for non-empty items, a larger set of parameters which serves as flags are used. The most important ones are listed here:

- **vaFlag(r,a)**: Indicates if value added for region \(r \) and activity \(a \) is non-empty
- **ndFlag(r,a)**: Indicates if intermediate composite added for region \(r \) and activity \(a \) is non-empty
- **xpFlag(r,a)**: Indicates if activity \(a \) for region \(r \) is non-empty
- **xfFlag(r,f,a)**: Indicates if primary factor \(f \) is used by activity \(a \) in region \(r \)
- **xaFlag(r,i,aa)**: Indicates if Armington agent \(aa \) demands product \(i \) in region \(r \)
- **xwFlag(r,i,rr)**: Bilateral trade flag

Given these examples, the names of the other flags should be hopefully self-explanatory.

2.2 Reminder on CES and CET equations

Many relations in the model are based on Constant Elasticity of Substitution (CES) and Constant Elasticity of Transformation (CET) functions, using constant returns to scale, i.e. the homothetic case. That implies that average costs (respectively returns) are equal to marginal costs (respectively returns). As a consequence, the functional form can only be used to find per unit minimal cost (respectively per unit maximal revenue), but not to define the total amount to demand or transform. For each CES or CET nest comprising \(n \) inputs or outputs, there are \(n+1 \) equations comprised in the model: one equation which defines the average price and \(n \) equations which define the \(n \) demand or output quantities under the nest.

The \(n \) quantity equations have always the same structure, shown below for the CES case which defines the demand for \(x_i \) as follows. A given share parameter \(\alpha_i \) defined at the benchmark is multiplied with the total quantity \(y \) to distribute. That total, as explained above, must be defined by another mechanism in the model. The resulting share on the total is then updated by multiplying it with the price relation between the average or composite price (index) \(\tilde{p} \) and the price \(p_i \), exponent the substitution elasticity \(\sigma \). Note that settings the substitution elasticity to zero yields the Leontief case where the original physical shares stay constant. A shifter variable \(\lambda \) can be used to update preferences or the cost structure to reflect non-Hicks neutral technical progress. The reader should note again that the demands are homothetic: increasing the total \(y \) by 1% will increase also all individual demands \(x_i \) by 1% if prices and shifters stay constant.
Overview on the supply side

\[x_i = \alpha_i y \left(\frac{-\tilde{p}}{p_i} \right)^{\gamma} \lambda_i^{\gamma} \]

One might assume that the easiest way to define the average or composite price (index) \(\tilde{p} \) is to use value exhaustion, i.e. introducing an equation \(\sum_i x_i p_i = y \tilde{p} \). But note that this exhaustion equation requires the individual demands \(x_i \) being known, which is only possible if the average price \(\tilde{p} \) is known as well as it is used in the demand equation for \(x_i \), while this average price in turn is implicitly defined by the revenue exhaustion equation. That circular relation makes it hard for the solver to find a simultaneous solution for the n+1 equations.

Therefore, perhaps astonishingly, the far more non-linear dual price aggregator equation is used in most CGEs and also in CGEBox:

\[\tilde{p} = \left[\sum_i \alpha_i \left(\frac{p_i}{\lambda_i} \right) \right]^{\frac{1}{1-\gamma}} \]

The advantage is that the average price \(\tilde{p} \) can be defined from the individual prices, only, without requiring the total \(y \) or the individual demands \(x_i \). That reflects the homothetic nature of the function where the total does not affect the optimal shares. Once the average price is solved for, the other \(n \) equations can be solved independently from each other.

The reader might note that the dual price aggregator is undefined for the CD case where the substitution elasticity is unity as the rightmost exponent will become undefined. The CD case leads to the following dual price aggregator:

\[\tilde{p} = \prod_i \left(\frac{p_i}{\alpha_i \lambda_i} \right)^{\alpha_i} \]

As most CES/CET nests in CEGBox allow for the CD case, both dual price aggregators are found in the model and switched on/off depending on the substitution respectively transformation elasticity.

Finally, the case of infinite substitution or transformation cannot be handled by the equations above. They require instead a simply linear aggregator to add the components to the aggregate and the law of one price, i.e. the average price is equal to each component price.

The CET case looks structurally identical, but is not shown here.

2.3 Overview on the supply side

The following Figure 1 depicts the quantity and price variables as well as the substitution and transformation elasticities used on the supply side. The bottom part is defined for the production activities \(a \) with total output denoted with \(xp \) and related price \(px \). It is composed of a value added composite \(va \) and an intermediate demand composite \(nd \). The value added composite combines primary factor \(f \) and potentially technology sub-nests \(tNest \). The intermediate demand composite \(nd \) combines intermediates defined as Armington demands \(xa \) of the activities and potentially technology sub-nests \(tNest \). Technology sub-nests can combine other sub-nests, primary factors and intermediates.
in a nested fashion. Note firstly that primary factors or intermediates can be present in different shares in sub-nests and, secondly, that if the Melitz / Krugmann specification is used for a sector, fix costs are present in a separate sub-nest which does not contribute to xp.

Figure 1: Overview on production function nesting

The output of the activities xp can be transformed for the non-diagonal make case to different commodities x as shown in the middle box. If several activities produce the same commodity, the different x can be combined in supply xs based on a CES aggregator as shown in the top box.

For the upper two boxes, the code supports the case of finite and infinite transformation respectively substitution where the infinite case implies a linear aggregation and the case of one price. For the production nests, only finite transformation is supported including the CD case.
2.4 Production block

The model is set up to work with non-diagonal make matrices where one activity might produce several outputs and one output might be produced by several activities. The production block therefore is defined for activities \(a \) and not for the outputs \(i \). Furthermore, in case regions are dis-aggregated to sub-regions, the production function is defined for these dis-aggregated regions. Accordingly, nations which are dis-aggregated to sub-regions \(disr \) are excluded from these equations. The production reflects the “Flexible nesting” approach which allows introducing CES-subnests under the value and the intermediate composite nests, or under other CES-subnests.

The nested production function for each activity \(a \) comprises a top nest which combines a value added \(va \) and intermediate demand \(nd \) composite with a substitution elasticity of \(sigmap \). The production frontier can be shifted with the variable \(axp \). The top nest is represented by its dual price aggregator in the equation \(pxeq \). That equation considers three cases which are shown below: (1) \(sigmap \) is non-zero and different from unity with leads to the usual dual price aggregator for the CES case, (2) the CD case where \(sigmap \) is unity with a different dual price aggregator and (3) the Leontief case with \(sigmap \) equal to zero. The price for the intermediate composite is called \(pnd \) and that for the valued added one \(pva \). The related technology shifters are the variables \(lambdand \) and \(lambdava \) while the share parameters are called \(and \) and \(ava \).

Note that the unit cost price \(px \) might be substituted out from the model in the diagonal make case based on the macro \(mm_px \). The equation is identical to VDM 2018, equation (3).

The \(mm_px \) macro is in the usual case equal to the \(m_xp \) macro which is shown shown below. It directly uses the product specific supply price \(ps \) corrected for production taxes \(prdtx \) in case of a diagonal make relation for that activity as depicted by the flag \(diag(a) \). If the activity produces several outputs, its unit cost price \(px \) is used instead. Note that the \(xFlag \) indicates which outputs \(k \) are produced by activity \(a \) in region \(r \):

\[
\text{The demand for the value added composite } va \text{ is defined in the equation } vaeq. \text{ VDM 2018, Equation (1). It comprises the same symbols as shown above in the top level unit cost definition. Note that the equation treats the Leontief case where } sigmap \text{ is zero differently by removing the prices from the equation which can speed up solution.}
\]
Note that the \(vaeq \) equation is scaled with the scale field of the value added demand \(va.scale \). Scaling factors are present basically in all equation relating to quantities or volumes to ease automated scaling by the solver and provide a more useful interpretation of the relative and absolute tolerances used by the solver.

The relevant activity output quantity driven the value added demand is defined in the macro \(m_xp \). It uses directly the commodity supply \(xs \) in case of diagonal make matrix for that activity, i.e. \(\text{diag}(a) \) is not zero, otherwise, it introduces the activity output \(xp \) in the equation. Note the symmetry with the \(m_px \) macro shown above for the output price.

\[
\text{\$macro m_xp(r,a,t) \{ xp(r,a,t) \$ (not diag(a)) + sum(k \$ xFlag(r,a,k), xs(r,k,t)) \$ diag(a) \}}
\]

The equation \(ndeq \), VDM 2018, Equation (2), identically structured as the \(vaeq \) equation above, drives the demand for the intermediate demand composite:

\[
\text{ndeq(r,t,a,m,a,t,ti)} \$ mFlag(r,a) ..
\text{nd(r,a,t)/nd.scale[r,a,t] \$ m_xp(r,a,t)/nd.scale[r,a,t]}
\text{ * \{ [(pFlag(r,a)/pFlag(r,a,0)^mFlag(r,a) $ mFlag(r,a) + 1 \} (not mFlag(r,a)) \}
\text{ * [(mFlag(r,a)^mFlag(r,a)) \$ mFlag(r,a) + 1 \} (not mFlag(r,a)) \}}
\text{ * [mFlag(r,a)^mFlag(r,a)) \$ mFlag(r,a) + 1 \} (not mFlag(r,a)) \}
\]

The demand for primary factors \(xf \) by each activity depends on a shifter variable \(\lambda f \), the share parameter \(af \), total value added demand \(va \) and the price relation between the price of the value added bundle \(pva \) and the sector specific factor price \(pfa \), defined via the macro \(m_pfa \), exponent the substitution elasticity \(\sigma va \):

\[
\text{equipment output quantity \(x_{r,f,a} \) by each activity depends on a shifter variable \(\lambda f \), the share parameter \(af \), total value added demand \(va \) and the price relation between the price of the value added bundle \(pva \) and the sector specific factor price \(pfa \), defined via the macro \(m_pfa \), exponent the substitution elasticity \(\sigma va \):}
\]

\[
XF_{r,f,a} = \alpha_{r,f,a} VA_{r,a} \left(\frac{PVA_{r,a}}{PF_{r,f,a}} \right) \left(\lambda_{r,f,a} \right) \left(\sigma_{va} \right)_{r,f,a}
\]

\[
+ \alpha_{r,f,a}^{ Nest} X_{r,Nest,a} \left(\frac{PNEST_{r,Nest,a}}{PF_{r,f,a}} \right) \left(\lambda_{r,f,a} \right) \left(\sigma_{va} \right)_{r,f,a}
\]

The second part of the equation is not part of the standard model and only active if technology nests are used and is described in the section “Flexible nesting”. It comprises the same elements: share parameters insides the nests \(afNest \), the composite demand for the nest \(xNest \), the price relation which now uses the average price of the nest \(pNest \) and the substitution elasticity \(\sigmaNest \). Note that the demand from technology nests is added, i.e. the model supports a layout where several technology nests and the value added nest can demand the same factor (or intermediate composite, see below) in different sahres.
The dollar conditions might warrant some comments. The first one is the flag $xfFlag$ indicating that the activity a is using that factor f, while the second ensures that also share parameters are present, either in the value added nests and/or some technology nests. That double security might secure against cases where due to numerical thresholds, share parameters are set to zero despite the fact that there some tiny quantity reported in the SAM.

The value added composite price pva is defined in the $pvaeq$ equation. It differentiates the cases where the substitution elasticity σ_{va} between primary factors is (1) not unity, i.e. CES or Leontief, (2) unity, i.e. the CD case:

$$pvaq(r_{a},s(t),a,t); @ vFlag(r_{a}) ..$$

```plaintext
-- CES case (or leontief)
|
-- contribution of factors to top VA nests
sum(lf @ af(r_{f},s(t),a,t); af(r_{f},s(t),a,t)^{m_pFa(r_{f},s(t),a,t)/m_lassenfa(r_{f},s(t),a,t)}^{1-sigma va(r_{a},a))
-- contribution of technology nests to top VA nests (not part of standard GTAP model)
+ sum(tNest_n_a("VA",tNest,a), tNest(r_{Nest},s(t),a,t) @ PTNEst(r_{TNEst},s(t),a,t)^{1-sigma va(r_{a},a)) */(1-\sigma va(r_{a},a))); @ (sigma va(r_{a},a) ne 1)
-- CD case with sigmaV == 1
+ [ @ vVACD(t,r,a,t);]
-- contribution of factors to top VA nests
* prod(lf @ af(r_{f},s(t),a,t); m_pFa(r_{f},s(t),a,t)/m_lassenfa(r_{f},s(t),a,t)^{1-sigma va(r_{a},a))
-- contribution of technology nests to top VA nests (not part of standard GTAP model)
* prod(tNest_n_a("VA",tNest,a); tNest(r_{Nest},s(t),a,t), PTNEst(r_{TNEst},s(t),a,t)^{1-sigma va(r_{a},a))}]
``` (5*)

That equation differs from VDM 2018, equation (5) by the inclusion of the technology nests:

$$PVA_{r,a} = \left[\sum_{f} \alpha_{r,f,a}^{f} \left(\frac{PF^{a}_{r,f,a}}{\lambda^{f}_{r,f,a}} \right)^{1-\sigma_{r,a}} \right] + \sum_{\text{Nest}(a)} \alpha_{r,a}^{\text{Nest}} \left(\frac{PTNEST^{a}_{r,\text{Nest},a}}{\lambda^{a}_{r,\text{Nest}}} \right) \left[1^{1-\sigma_{r,a}} \right] ^{v} \right] ^{5(*)}$$

Note that the flexible nesting approach allows to link nests into the value added composite such that both sums and products of the individual factors and over nests are introduced in the equation.

A similarly structured equation $pdneq$ defines the intermediate composite price pnd. It is driven by the input coefficients io and their activity specific price $paint$ defined via a macro and individual technology shifters λ_{io} again captured by a macro. Note that the coefficients io describe shares inside the intermediate nest, and not relative to total output. As the standard GTAP model uses a Leontief representation for intermediate demand, the case where the substation elasticity σ_{io} is zero is separated out here as well, such that we find three blocks (CES, CD and Leontief). Separating out the Leontief case reduces model complexity as the solver will define a linear instead of a non-linear price aggregator.

Note that here again we consider the cases where the intermediate demand is driven by the intermediate composite (standard model) and/or by technology nests.
That equation thus differs again from VDM 2018 equation (7) due to the inclusion of the technology nests:

$$PND_{r,a} = \left[\sum_i \alpha_{r,i,a} \left(\frac{PA_{r,i,a}}{\lambda_{r,f,a}^{io}} \right)^{1-\sigma_{io}^{m}} + \sum_{\text{NEST}_{r,a}} \alpha_{\text{NEST},r,a} \left(\frac{PTN_{\text{NEST},r,a}}{\lambda_{r,f,a}^{\text{NEST}}} \right)^{1-\sigma_{\text{NEST}}^{m}} \right]^{\frac{1}{1-\sigma_{\text{NEST}}^{m}}} \tag{7*}$$

The dual price aggregator equation $ptNestEq$ for technology nests is depicted below. It considers the possible components: intermediates with the related share parameter $ioNest$, primary factors with their share parameter $afNest$ and finally sub-nests with share parameters $atNest$. The price and shifters used for intermediates and primary factors are identical to those described above for the value added and intermediate composite nests. Due to the different dual price aggregator necessary for the CD case, the equation comprises two blocks.
Note that his equation is not part of the GTAP Standard as documented in VDM 2018, it reads in mathematical notation:

\[
P_{\text{Nest}}(r_{\text{Nest}},a_{\text{Nest}},t) = \begin{cases}
\sum_{i} \alpha_{i,\text{Nest}}^{\text{Nest}} \left(\frac{P_{A,i,\text{Nest}}^{r_i}}{\lambda_{i,\text{Nest}}} \right)^{1-\sigma_{i,r_{\text{Nest}}}} \\
+ \sum_{f} \alpha_{f,\text{Nest}}^{\text{Nest}} \left(\frac{P_{F,f,\text{Nest}}^{r_{\text{Nest}}}}{\lambda_{f,\text{Nest}}} \right)^{1-\sigma_{f,r_{\text{Nest}}}} \\
+ \sum_{N_{\text{Nest}1,N_{\text{Nest}2}}} \alpha_{N_{\text{Nest}1,N_{\text{Nest}2}}}^{\text{Nest}} \left(P_{\text{Nest}}^{r_{\text{Nest1}},a_{\text{Nest2}},t} \right)^{1-\sigma_{r_{\text{Nest1}}}^{\text{Nest}}}
\end{cases}
\]

The demand for technology nests \(x_{\text{Nest}} \) is depicted by \(x_{\text{Nest}eq} \) shown below. There are three identically structured cases: (1) the nest is linked into the intermediate composite ND, (2) into the value added composite VA or (3) into another technology nests. The three cases differ in the aggregate price used (\(p_{\text{ND}} \), \(p_{\text{VA}} \) or \(p_{\text{Nest}} \)) and the substitution elasticity (\(\sigma_{\text{ND}} \), \(\sigma_{\text{VA}} \) or \(\sigma_{\text{Nest}} \)). In all cases, the share parameter is denoted with \(a_{\text{Nest}} \) and the related price with \(p_{\text{Nest}} \). Equally, in all cases, in order to reduce complexity for the solver, the price relation is taken out when the substitution elasticity is zero, i.e. the Leontief case.

Note that the third case where the technology nest \(t_{\text{Nest}} \) is part of another nest requires the alias \(t_{\text{Nest1}} \) which depicts the nest which is higher up in the technology tree.
Again, that equation is not part of the GTAP standard model version 7 as documented in VDM 2018. In mathematical notation it reads:

\[
x_{\text{eq}} = \sum_{i} x_{i} \quad \text{(8) in VDM 2018.}
\]

That case is shown when the flag \(\text{diag}(a) \) is not unity, i.e. a not diagonal activity. In that case, the \(\omega_{\text{mas}} \) transformation elasticity distributes the total output \(x_{p} \) to activity specific output \(x_{i} \) based on the \(g_{x} \) share parameter and the activity specific prices for each product \(i \) termed \(p \) in relation to average per activity prices found in the macro \(m_{\text{pp}} \). In case of infinite transformation, the prices have to be identical:

\[
x_{\text{peq}} = x_{s_{\text{x}}} + \sum_{i} \text{PEXT}_{r,\text{Nest},a} \left(\frac{P_{\text{Nest}}}{P_{\text{Nest},a}} \right) \omega_{\text{Nest},a} \quad \text{see (9) in VDM 2018.}
\]

The case of multiple outputs from one activity is depicted in the equation \(x_{\text{eq}} \). Equation (8) in VDM 2018. That case is shown when the flag \(\text{diag}(a) \) is not unity, i.e. a not diagonal activity. In that case, the \(\omega_{\text{mas}} \) transformation elasticity distributes the total output \(x_{p} \) to activity specific output \(x_{i} \) based on the \(g_{x} \) share parameter and the activity specific prices for each product \(i \) termed \(p \) in relation to average per activity prices found in the macro \(m_{\text{pp}} \). In case of infinite transformation, the prices have to be identical:

\[
X_{\text{Nest}} = a_{\text{r},\text{Nest},a} V_{a_{\text{r},\text{Nest},a}} \left(\frac{P_{\text{Nest}}}{P_{\text{Nest},a}} \right) \omega_{\text{r},a}
\]

More information on the nesting approach can be found above in the section “Flexible nesting”.

The case of multiple outputs from one activity is depicted in the equation \(x_{\text{eq}} \). Equation (8) in VDM 2018. That case is shown when the flag \(\text{diag}(a) \) is not unity, i.e. a not diagonal activity. In that case, the \(\omega_{\text{mas}} \) transformation elasticity distributes the total output \(x_{p} \) to activity specific output \(x_{i} \) based on the \(g_{x} \) share parameter and the activity specific prices for each product \(i \) termed \(p \) in relation to average per activity prices found in the macro \(m_{\text{pp}} \). In case of infinite transformation, the prices have to be identical:

\[
X_{\text{Nest}} = a_{\text{r},\text{Nest},a} V_{a_{\text{r},\text{Nest},a}} \left(\frac{P_{\text{Nest}}}{P_{\text{Nest},a}} \right) \omega_{\text{r},a}
\]
The distribution of output from nations to different sub-regions is described in the section “Integration into the modeling framework” of the chapter “Sub-regional dis-aggregation of production and factor markets in CGEBox”.

2.5 Factor markets

The supply of fully mobile or sluggish factors $x_f t$ at national level $rsNat$ is depicted by the equation x_{fteq} in case where the factor supply is not fixed (.range eq 0), equation 69 in VDM 2018. It is driven by the factor price $p_f t$ relative to the price of aggregate domestic absorption p_{abs} and the factor supply elasticity eta_f. If eta_f is zero, the price dependent part becomes a constant of unity and $x_f t$ is fixed to the constant $a_f t$. Note that endogenous factor supply is not part of the standard GTAP model. Demand for new capital as a new factor is part of the capital vintage module and depicted differently.

The related economy wide average factor price $p_f t$ is defined by the equation p_{fteq}, equation (71) in VDM 2018 expanded with factor supply nests, which distinguished the sluggish case with a dual price aggregator (first block) and the fully mobile case where the equation ensures market clearing (second block):

In case of sluggish factor supply, the agent specific factor prices net of taxes pf are aggregated using the dual price aggregator ($\sum_{r\in\text{region}} (\text{omegaf}(r, fm) \times \text{pf}(r, fm, t))$) in the first block, considering factor demand captured by the value added composite and by technology nests. In case of fully mobile factors (the second block), the price is not directly defined in the equation, but rather indirectly via market clearing.

Sector specific factor prices net of taxes pf are directly or indirectly defined in the equation p_{fteq} shown below, equation (70) in VDM 2018. It considers five different cases. The first case considers
sluggish factor supply where the factor is part of the value added nest. The usual CET distribution logic applies: the supply depends on the share parameter gf and the total supply xft as well as on the relation between the price paid in the sector pf relative to the average one pft, exponent the transformation elasticity $omegaf$. The second case where the factor is part of factor supply nest under sluggish supply is identically structured, with the difference that the average price is now nest specific, i.e. $pfNest$ as is the transformation elasticity $omegafNest$.

Next we have the two cases with fully mobile supply: either in case of economy wide full mobility or fully mobility inside in a nest. In both cases, the sector specific price is equal to the average one. The last case depicts immobile factors: here, the default case is that the immobile factor supply elasticity $etaff$ is zero such that the factor demand xf must be equal to the given parameter gf.

The **agent specific factor prices tax inclusive** are defined via the equation $pfaeq$ and the macro m_pfa, equation (73) in VDM 2018:

$$pfaeq_{(r,f,a,t)} = xflagr_{(r,f,a)} + \text{tax}_t \cdot \text{mpfa}_{(r,f,a,t)}$$

The macro m_pfa distinguishes the case of finite transformation of factor supply and the case of full factor mobility, i.e. infinite transformation and adds the national tax rates, i.e. subsidy rates $fctts$, tax rates $fcttx$ and an economy factor tax shifter $fcttxShift$:

The “Flexible nesting” approach allows introducing factor supply nests which can also be linked into other factor supply nests. The equation $pfNestEq$ defines the average factor price of such a nest. It distinguishes the cases of finite factor transformation in the first block and infinite one in the second. In the first block, the average price $pfNest$ is defined via dual price aggregator, taking the share parameters (gf for factors and $gfNest$ for sub-nest), the prices (pf for factors and $pfNest$ for sub-nests) and the transformation elasticity $omegafNest$ into account. In case of infinite transformation handled
by the second block, the price is indirectly defined from the adding up-condition of the factor quantities. That equation is not part of the GTAP standard model.

The total factor supply to such a nest \(xfNest\) as defined in the \(xfNestEq\) again considers these two cases. In case of finite transformation in the first block, total supply either depends on the sector wide supply of that factor of \(xft\) and the price relations or on the amount supplied to the nest \(fNest1\) to which the sub-nest belongs. In case of infinite transformation, the sub-nest price is either equal to the sector-wide factor price \(pf\) or to the price of the upper nest \(pfNest\) indexed with \(fNest1\).

The factor supply form nation to sub-regions is described in the section “Integration into the modeling framework”, pages 101ff of the chapter “Sub-regional dis-aggregation of production and factor markets in CGEBox”. Note also that the “GTAP-AEZ” module (pages 187ff) will introduce land transformation at the level of Agro-Ecological Zones and replace some of the equations detailed above.

2.6 Income generation and distribution - overview

An overview on income generation and distribution under the regional household approach is depicted in Figure 2 below. Regional income is sourced (1) by factor income \(facty\) (factor remuneration
including direct taxes) minus depreciation \((valDep)\) and (2) by indirect taxes \(yTaxInd\), i.e. all tax flows \(yTaxTot\) minus direct taxes \(yTax_d\) which are already comprised in the factor income.

Regional household income \(regy\) is distributed to final demand expenditures of private households \(yc\), government \(yg\) and regional net savings \(rsav\). Adding the value of depreciation \(valDep\) and of foreign savings \(valSavf\) to regional net savings \(rsav\) yields investment demand expenditures \(yi\). The distribution of the final demand expenditures to the Amington demands for each product \(xa_i\) is based on CES demand systems for investments and the government which hence encompass the CD or Leontief case, whereas a CDE, LES or AIDADS demand system can be used to distribute private household expenditure \(yc\).

Figure 2: Overview in income generation and distribution

2.7 Income generation

Regional income \(regy\), i.e. economy wide income which can be spent on net savings and final consumption by government and private households, is generated from factor income including direct taxes \(factY\) and indirect taxes \(yTaxInd\) as defined in the \(regYe\)q, equation (26) in VDM 2018:

```plaintext
factY[t, t] = factY[t, t] + yTaxInd[t, t] / regY.scale[t, t];
```

Factor income including direct taxes \(factY\) is defined by the \(factYe\)q, equivalent to equation (25) in VDM 2018. Is considers returns to primary factors, i.e. economy wide factor prices \(pft\) multiplied with economy wide factor use \(xft\) for mobile factors and sector specific factor use \(xf\) and related prices \(pf\) for immobile factors. Note that factor income comprises direct taxes. As returns to capital also cover
depreciation, the value of depreciation is deducted, considering the depreciation rate f_{depr}, the average price of investments pi and the capital stock $kstock$:

\[
\text{Indirect tax income } y_{TaxInd} \text{ is calculated by the } y_{taxIndEq} \text{ from total tax revenues } y_{taxTot}, \text{ corrected for direct taxes (index “dt”) comprised in factor income } factY \text{ as defined above, see equation (24) in VDM 2018:}
\]

\[
y_{TaxInd}[rNat,t; t(t)] \ldots
\]

\[
y_{taxInd}[rNat,t; factY[rNat,t; t(t)]] \Rightarrow \frac{y_{taxTot}[rNat,t] - y_{tax}[rNat,"dt",t]}{factY[rNat,t]}
\]

\[
\text{Total tax income } y_{TaxTot} \text{ considers all tax flow } gy \text{ depicted in the model (see next equation) and is defined by the equation } y_{taxTotEq}, \text{ equivalent to equation (23) in VDM 2018:}
\]

\[
y_{TaxTot}[rNat,t; t(t)] \ldots
\]

\[
y_{taxTot}[rNat,t; factY[rNat,t; t(t)]] \Rightarrow \sum_{gy}(y_{tax}[rNat,gy; t])/y_{TaxTotScale}[rNat,t]
\]

\[
\text{Tax flows } y_{Tax} \text{ for the different types of tax flow } gy \text{ are defined by the equation } y_{taxEq}, \text{ defined in equation (13)-(22) in VDM 2018. It considers the following blocks:}
\]

1. **Production taxes** pt, levied with the relative tax rate $prdtx$ on sectoral revenues, i.e. output m_px times the related producer price m_xp. Note that fix cost might be present in the model if the Melitz/Krugmann extension is used, depicted by the technology nest “Top” on which also production taxes are charged.

\[
\text{Note the product specific general tax shifter } itxShft \text{ which is normally not active.}
\]

Two other blocks apply the very same logic to government and investment consumption, resulting in tax flows gc and ic:

2. **Indirect taxes on private consumption** pc, charged with rate $dintx$ on domestic consumption of private household m_xd times the related domestic price m_pd, and with rate $mintx$ on imports by private households m_xm times the average price of imports pmt:

\[
\text{Note the product specific general tax shifter } itxShift \text{ which is normally not active.}
\]

Direct taxes dt are levied with factor specific rates $kappaF$ on factor income, i.e. factor prices p respectively pft times factor use xf respectively xft. An endogenous or exogenous direct tax shifter $kappaf$ can be added:

4. **Export tax revenues** et are based on bi-lateral export tax rates $expTx$ and potentially commodity specific export tax shifter $etax$. Note that depending on how exports are depicted (infinite transformation or not), different prices are used: (a) the bi-lateral export price pe if there is finite transformation between
destination), (b) the average export price pet if there is infinite transformation between destination, but not between exports and domestic sales and (c) the supply price ps if all transformations are infinite. Finally, if the Melitz module is active, the firm price defined in the macro m_pFirm is used. The related quantity is defined in the macro m_{xws}.

5. Import taxes “mt” are defined from bi-lateral import taxes $imptx$, a commodity specific import tax shifter $mtax$, the bi-lateral c.i.f. prices defined via $\%pmcif\%$ and the bi-lateral flows xw.

6. Factor taxes ft paid by each activity are levied on the activity specific factor price pf and use xf with the rates $fcttx$ and a factor tax shifter $fcttxShift$:

The same logic (less the shifter) applies for factor subsidies fs:

8. Finally, emission taxes $emis$ can be introduced, levied on emissions $emis$ with the potentially endogenous price $emisP$. Currently, these only relate to CO2 emissions.

9. 2.8 Income distribution

If the regional household approach is used, savings, government and household demand are distributed based on a modified CD utility function where the private household demand share is driven by the utility of total private expenditure with regard to utility ϕP and the original private demand share $betaP$, part of equation (28) of VDM 2018:

The updated share $betaP$ termed $betaPhi$ implies that the shares as defined in the benchmark do not add to unity any longer. Therefore, an intermediate variable $phiRegY$ is defined which scales regional income to reflect the updated sum of the shares. Assume that $betaPhi$ is increased compared to the benchmark. That implies that the second term on the LHS exceed unity. The total expenditure $phiRegy$ is accordingly proportionally decreased to yield still total regional income $regY$, part of equation (28) in VDM 2018:

That corrected income then dries the private, government and savings expenditures. The amount spent for private consumption yc is defined in the equation $yceq$, equation (29) in VDM 2018:
Household consumption

The amount spent for government consumption yg is defined in the equation $ygeq$, equation (30) in VDM 2018:

* Total government consumption expenditure -- GOVCONSEQ (2265)

\[
yg(Nat,t)/yg_scale(Nat,t) = \beta(Nat,t)*\phi(Nat,t)/yg_scale(Nat,t);
\]

And finally, the amount of regional savings $rsav$ is depicted in the equation $rsaveq$, equation (31) in VDM 2018:

* Total nominal saving -- SAVING (2270)

\[
rsav(Nat,t)/rsav_scale(Nat,t) = \beta(Nat,t)*\phi(Nat,t)/rsav_scale(Nat,t);
\]

Note that the regional household approach can be replaced by separate accounts, see the sub-section “Model equations” in the section “myGTAP module”.

2.9 Household consumption

The consumer price index $pcons$ is defined from the budget share $xchs$ and the Armington prices defined in the macro m_pa, equation (38) in VDM 2018:

* Consumer expenditure deflator (approx.) -- PHLDSINDEX (1005)

\[
pcons(Nat,h,t) = \sum (i \in \{ \text{products} \} \text{ and } (\text{pcons_range(Nat,h,t) ne 0) or (not pcons(Nat,h,t) ne 0) }) ..
pcons(Nat,h,t) = \sum (i \in \{ \text{products} \} \text{ and } (\text{pcons_range(Nat,h,t) ne 0) or (not pcons(Nat,h,t) ne 0) }) ..
\]

The Armington demands for household consumption can be defined either by a CDE demand system as used in the GTAP Standard model or a LES demand system as found in my other CGEs. Note that the LES system collapses to a CD system if the commitments are removed, such the model can host three different demand system for household consumption.

2.9.1 CDE case

In the standard GTAP model, a constant difference in elasticity (CDE) indirect demand system is used. The equations can be found “mod_dem_cde.gms”. The final demand quantity xa (the Armington demand) for each household h and product i are defined from the budget shares $xchs$ and the private consumption expenditures yc, see equation $xaceq$, equation (37) in VDM 2018:

\[
xa(Nat,i,h,t) _scale(Nat,i,h,t) = \sum (i \in \{ \text{products} \} \text{ and } (\text{pcons_range(Nat,h,t) ne 0) or (not pcons(Nat,h,t) ne 0) }) ..
xa(Nat,i,h,t) _scale(Nat,i,h,t) = \sum (i \in \{ \text{products} \} \text{ and } (\text{pcons_range(Nat,h,t) ne 0) or (not pcons(Nat,h,t) ne 0) }) ..
\]

The budget shares $xchs$ as defined in the equation $xchs_req$ are derived from unscaled shares $zcons$, scaled again by unity based on their sum $zCons_Sum$, equation (36) in VDM 2018:

\[
xchshreq(r,i,h,t) _scale(r,i,h,t) = \sum (i \in \{ \text{products} \} \text{ and } (\text{pcons_range(Nat,h,t) ne 0) or (not pcons(Nat,h,t) ne 0) }) ..
xchshreq(r,i,h,t) _scale(r,i,h,t) = \sum (i \in \{ \text{products} \} \text{ and } (\text{pcons_range(Nat,h,t) ne 0) or (not pcons(Nat,h,t) ne 0) }) ..
\]

The unscaled shares $zcons$ as defined in the equation $zconseq$ depend on utility uh (i.e. indirectly on expenditures) and the product prices defined in the macro m_pa relative to income yc per capita, defined from population pop for that household and three parameter vectors $alpha_a$, bh and eh. That is an unnumbered equation in VDM 2018, noted before equation (36):
The sum of these unscaled shares must also consider the case of sub-nests in demand, defined in the equation $z_{ConsSumeq}$, part of equation (36) in VDM 2018:

$$z_{ConsSumeq}(r,i,h,t) = \sum_j (x_{Flag}(r,i,h) \& (not sum(Nest_i, dNest, i, h, l))) \cdot \text{zcons}(r,i,h,t)/\text{zcons.scale}(r,i,h,t)$$

The utility level u is indirectly defined by the following equation in the equation u_{heq}, equation (32) in VDM 2018:

$$u_{heq}(r,i,h,t) = \sum_j (x_{Flag}(r,i,h) \& sum(Nest_i, dNest, i, h, l))/\text{zcons}(r,i,h,t)/\text{zcons.scale}(r,i,h,t)$$

Finally, the elasticity of private expenditure versus private utility ϕ_{PEq} is defined in the equation ϕ_{PEq}. It updates the private consumption share in the regional household income distribution:

$$\phi_{PEq}(r,i,h,t) = \{(\phi_{PEq}(r,i,h) + y_{CNonCom}(r,dNest,h,t))/\text{zcons.scale}(r,i,h,t)\}$$

2.9.2 LES or CD case

The equations for the LES or CD case are found in the file “model\dem_les.gms”. The LES case is not part of GTAP Standard model.

The Armington demands x_a in the LES case reflect the constant term $gammaLES$, often termed commitment, and a share $alphaLES$ on ono-committed income $y_{CNonCom}$ divided by the Armington price defined in the macro m_{pa}:

$$x_{A}(r,i,h,t) = gammaLES \cdot \alpha_{LES} \cdot y_{CNonCom}(r,dNest,h,t)/\text{m}_{pa}(r,i,h,t)$$

That equation replace equation (37) in VDM 2018, CDE case:

$$X_{A,r,i,h} = \gamma_{LES}^r pop_{r,h} + \alpha_{LES}^r y_{CNonCom}^r$$

The same functional relation is also used to define sub-nests demands as defined in the equation $x_{dNestLesEq}$:

$$x_{dNestLesEq}(r,dNest,h,t) = \sum_{top}(x_{dNest, dNest, i, h, l}) \cdot x_{dNest, scale}(r,dNest,h,t)$$

The same functional relation is also used to define sub-nests demands as defined in the equation $x_{dNestLesEq}$:
Non-committed income y_{NonCom} as defined in the equation y_{NonComEq} reflect total private consumption expenditure y_C minus the value of the commitments, i.e. the gamma parameters multiplied with the Armington prices defined in the macro m_{pa}:

$$y_{\text{NonCom}}(r,h,t,s(t)) \equiv \sum(i,x_{\text{flag}}(r,i,h)) \ldots$$

$$y_{\text{Com}}(r,h,t) = \sum(i) \times x_{\text{Flag}}(r,i,h) \times \alpha_{r,i,h} \times \gamma_{r,i,h} \times m_{pa}(r,i,h,t)$$

In mathematical notation:

$$y_{\text{NonCom}}_{r,h} = \left(y_C_{r,h} - \sum_i \gamma^{\text{LES}}_{r,i,h} \times P_{r,h} \times PA_{r,i,h} \right) - \sum_{d\text{Nest}} \gamma^{\text{LES}}_{r,d\text{Nest},h} \times P_{r,h} \times PD_{r,d\text{Nest},h}$$

The **budget shares** x_{cshhr} are defined from the Armington demands, prices and expenditures in the equation $x_{cshhr,LESeq}$:

These budget share equation replace equation (36) in VDM 2018 for the CDE case:

$$s_{r,i,h}y_{r,h} = X_{A_{r,i,h}} \times PA_{r,i,h}$$

Finally, the utility for the private households uh is defined in the equation $uhLESeq$:

$$uhLESeq(r,h,s(t)) \equiv \sum(i,x_{\text{flag}}(r,i,h)) \ldots$$

$$uh(r,h,t) = \begin{cases} 1/uhLESeq(r,h,t) \\ *prod \times (x_{\text{flag}}(r,i,h) \times \alpha_{r,i,h}) \\ *\prod \times \text{Nest} \times \alpha_{r,i,h} \times \gamma_{r,i,h} \times m_{pa}(r,i,h,t) \\ *\prod \times \text{Nest} \times \alpha_{r,i,h} \times \gamma_{r,i,h} \times m_{pa}(r,i,h,t) \end{cases}$$

Note that the CD case is comprised in the equations above if the commitment terms are set to zero. The equation above replaces equation (32) from VDM 2018 for the CDE case:

$$U^h_r = \frac{1}{UBas} \prod_i \left(X_{A_{r,i,h}} \times PA_{r,i,h} \right)^{\alpha_{r,i,h}} \prod_{d\text{Nest}} \left(X_{d\text{Nest}} \times \alpha_{r,d\text{Nest},h} \times \gamma_{r,d\text{Nest},h} \times P_{r,h} \right)^{\alpha_{r,d\text{Nest},h}}$$

The econometrically estimated AIDADS system as part of G-RDEM modules is detailed in section “An AIDADS demand system with detail for food consumption”, pages 124 ff.

2.10 Government consumption

First the reader is reminded that under the regional household approach, there is not separate household account and hence no direct link between tax income and government spent. That can be changed by using the “myGTAP module”.

Government consumption y_g under the regional household approach is a share $betag$ of regional income $regy$, corrected for the endogenous share of private spent captured by $phiRegy$ (see above for savings), equation (39) in VDM 2018:

$$y_{g}(r,Nat,s(t)) \ldots$$
The physical demand aggregate x_g is derived from the price index pg defined by the equation $pgeq..$, equation (40) in VDM 2018, expanded to account for demand nests. The price index pg is defined under the assumption of CES / CD / Leontief demand for government using the typical dual price aggregator based on the investment specific Armington prices defined by the macro m_{pa}, a preference shifter variable λ_{m} and the share parameters α_a for government. Which case is used is defined by the related substitution elasticity σ_m. Note that the equation also considers the case that government demand uses CES sub-nests which aggregates products to product groups:

\[
pgeq(rNat, t) \leftarrow axg(rNat, t) \ldots
\]

\[
pgeq(rNat, t) \leftarrow \ldots
\]

\[
\text{CD case with σ_m=1}
\]

\[
\left\{ \text{prod(l, gov)} \left\{ \left(\text{not sum(dnest l fd dnest, i, gov, t l)} \right) \left(\alpha_{alp} rNat, l, gov, t l) \alpha_{alp} rNat, s, gov, t l) \right\} \right\}
\]

\[
\text{CES-nested, not part of Standard GTAP model}
\]

\[
\left\{ \text{prod(dnest l fd)''}' \left(\alpha_{alp} rNat, dnest, gov, t l) \right) \left(\alpha_{alp} rNat, dnest, gov, t l) \right\} \left(\alpha_{alp} rNat, dnest, gov, t l) \right\}
\]

\[
\text{CD or Leontief case with σ_m>1}
\]

\[
\left\{ \left(\text{sum(l, gov)} \left(\left(\text{not sum(dnest l fd dnest, i, gov, t l)} \right) \left(\alpha_{alp} rNat, l, gov, t l) \alpha_{alp} rNat, s, gov, t l) \right\} \right) \left(\sigma_m rNat, l, gov, t l) \right\}
\]

\[
\text{CES-nested, not part of Standard GTAP model}
\]

\[
\left\{ \text{sum(dnest l fd)''}' \left(\alpha_{alp} rNat, dnest, gov, t l) \right) \left(\alpha_{alp} rNat, dnest, gov, t l) \right\} \left(\alpha_{alp} rNat, dnest, gov, t l) \right\}
\]

\[
\left(1/\left(1-\sigma_m rNat, l, gov, t l \right) \right) \left(\alpha_{alp} rNat, l, gov, t l) \right) \left(\alpha_{alp} rNat, l, gov, t l) \right)
\]

The macro m_{pa} is usually defined as follows. If both a share parameters for imports α_m and for domestic sales α_d is given, it uses the definition of the Armington price m_{padef} given below. Otherwise, it uses directly either the macro for the domestic price m_{pdp} or for the import prices m_{pmp}. Finally, if neither of the two share parameters is given, the Armington price is used, a case relevant when the Melitz module is active.

\[
\text{The macro m_{padef} can either introduce the Armington price pa or can replace it with the dual price aggregator, equation (47) in VDM 2018:}
\]

\[
\text{The physical demand x_g is distributed in the equation $xageq$, equation (39) in VDM 2018, to demand for individual products based on given share parameters α_a, Armington prices captured by the m_{pa} macro and the average price pg based on the substitution elasticity σ_m:}
\]

\[
\text{Note that in the case of demand nests for government consumption, not part of the GTAP standard model, additional equations are used as described in the section Demand sub-nests. The demand nest equation for the government is defined as:}
\]
Investments and savings

\[X_{dNest, r, dNest, gov} = \alpha_{r, dNest, gov}^{top} \left(\frac{PG_{r}}{PdNest_{r, dNest, gov}} \right)^{\sigma_{r}} + \alpha_{r, dNest, gov}^{top1} X_{dNest, r, dNest, gov} \left(\frac{PdNest_{r, dNest, gov}}{PdNest_{r, dNest, gov}} \right)^{\sigma_{r}} \]

2.11 Investments and savings

Gross investment expenditures \(y_i \) are composed of the value of depreciation \(valDep \) and of regional savings \(rsav \) and foreign savings \(valSavf \) by the equation \(yieq \), equation (85) in VDM 2018:

The price index of investments \(p_i \) is defined by the equation \(pieq \), equation (43) in VDM 2018 expanded for demand nests. For a detailed explanation of the equation, refer to the explanation for government above:

The total physical investment demand \(x_i \) is derived from the price index \(p_i \) defined above and total investment expenditure \(y_i \), as defined in equation \(xieq \), equation (44) in VDM 2018:

Product specific investment demand \(x_{ai} \) depicted in the equation \(xai_eq \), equation (42) in VDM 2018, reflects the share parameters \(\alpha_{ai} \), the substitution elasticity \(\sigma_{ai} \) and the shifter variable \(\lambda_{ai} \):
The **value of depreciation** valdep is a given share depr on the variably capital stock kstock which together define the physical depreciation, multiplied with the average price of savings pi, equation (85) in VDM 2018:

\[
\text{valdep}(\text{rNat},t)/\text{valdep.scale}(\text{rNat},t) = \text{pi}(\text{rNat},t)^*\text{depr}(\text{rNat},t)^*\text{kstock}(\text{rNat},t)/\text{valdep.scale}(\text{rNat},t);
\]

Regional savings rsav are a given share betas of regional income, corrected for expansion effects, equation (31) in VDM 2018:

\[
\text{rsav}(\text{rNat},t)/\text{rsav.scale}(\text{rNat},t) = \text{betaS}(\text{rNat},t)^*\text{phiRegY}(\text{rNat},t)/\text{rsav.scale}(\text{rNat},t);
\]

The correction implied by phiRegY ensures that the shares of savings betaS, government betaG and private consumption betaPhi add up to unity, part of equation (28) in VDM 2018:

\[
\text{phiRegY}(\text{rNat},t) = \text{betaS}(\text{rNat},t)^*\text{betaG}(\text{rNat},t)^*\text{betaPhi}(\text{rNat},t)/\text{regY.scale}(\text{rNat},t);
\]

The **physical amount of regional savings** xsav is based on the savings expenditures rsav and the average price of savings psave, equation (34) in VDM 2018:

\[
\text{xsav}(\text{rNat},t)/\text{xsav.scale}(\text{rNat},t) = \text{rsav}(\text{rNat},t)/\text{xsav.scale}(\text{rNat},t);
\]

The **regional value of foreign savings** valSavf is defined from the value in foreign currency savf and the exchange rate lcu, part of equation (85) in VDM 2018:

\[
\text{valSavf}(\text{rNat},t)/\text{valSavf.scale}(\text{rNat},t) = \text{lcu}(\text{rNat},t)^*\text{savf}(\text{rNat},t)/\text{valSavf.scale}(\text{rNat},t);
\]

The **foreign savings** in foreign currency savf can be driven by different mechanism. We start by discussing the so-called global bank mechanism which uses expected returns to foreign savings to distribute global net investments.

2.11.1 Global bank

The global bank mechanism distributes foreign savings across regions such that expected returns to net investments are equal across regions. The different steps in the allocation procedure are described by the following variables and equations.

Regional physical net investments netinv are the difference between gross investment demand xi and physical depreciation derived from the capital stock kStock and the depreciation rate depr, part of equation (86) in VDM 2018:

\[
\text{netinv}(\text{rNat},t)/\text{netinv.scale}(\text{rNat},t) = \text{xi}(\text{rNat},t) - \text{depr}(\text{rNat},t)^*\text{kstock}(\text{rNat},t)/\text{netinv.scale}(\text{rNat},t);
\]

The **beginning of period capital stock** kStock is defined in the equation kStockEq, equation (75) in VDM 2018. It converts with the factor krat capital use xft (for mobile or sluggish capital) or non-mobile capital use xf into the aggregate capital stock, where capital (types) are define by the set cap:

\[
\text{kStock}(\text{rNat},t)/\text{kStockEq}(\text{rNat},t) \equiv \{ (\text{kstock}(\text{rNat},t) \neq 0) \} \ldots
\]

\[
\text{kStock}(\text{rNat},t)/\text{scale}(\text{rNat},t) = \text{scale}(\text{rNat},t)
\]

\[
\text{scale}(\text{rNat},t) = \text{scale}(\text{rNat},t) \equiv \{ (\text{kstock}(\text{rNat},t) \neq 0) \} \ldots
\]

\[
\text{kStock}(\text{rNat},t)/\text{scale}(\text{rNat},t) = \text{scale}(\text{rNat},t)
\]

\[
\text{scale}(\text{rNat},t) = \text{scale}(\text{rNat},t) \equiv \{ (\text{kstock}(\text{rNat},t) \neq 0) \} \ldots
\]

\[
\text{kStock}(\text{rNat},t)/\text{scale}(\text{rNat},t) = \text{scale}(\text{rNat},t)
\]
The end of period capital stock kapEnd is derived by deducting the depreciating rate depr times the number of depreciation years nDeprYears and adding gross investment times the number of depreciations years, equation (76) in VDM 2018:

$$
\text{kapEnd} \left(\text{Nat}, t+1 \right) = (1 - \text{depr} \cdot \text{nDeprYears}) \cdot \text{stock} \left(\text{Nat}, t \right) + \text{xi} \left(\text{Nat}, t \right) \cdot \text{nDeprYears} / \text{kapEnd} \cdot \text{scale} \left(\text{Nat}, t \right)
$$

The average returns of returns to capital after taxes arent is defined in the equation arenteq, equation (77) in VDM 2018, from mobile capital prices pft, considering direct taxes kappaf and their potential shifter kappaShift as well as the factor which convert yearly capital use into stock values krat:

$$
\text{arenteq} \left(\text{Nat}, t \right) \cdot \alpha \left(\text{Nat}, t \right) = \text{arentr} \left(\text{Nat}, t \right)
$$

The net rate of return to capital rorc as defined in the equation rorceq, equation (77) in VDM 2018, corrects these gross returns factors arent for the depreciation rate fdepr:

$$
\text{rorceq} \left(\text{Nat}, t \right) \cdot \alpha \left(\text{Nat}, t \right) = \text{rorc} \left(\text{Nat}, t \right)
$$

The expected net returns to capital rore take the change in end of period capital stock kapEnd to beginning of period stock KStock exponent the elasticity $-\text{RorFlex}$ into account, multiplied with the net rate of return to capital rorc, defined in the two equations rorePart1Eq and roreEq, equation (79) in VDM 2018:

$$
\text{rorePart1Eq} \left(\text{Nat}, t \right) \cdot \alpha \left(\text{Nat}, t \right) = \text{rorePart1} \left(\text{Nat}, t \right)
$$

As shown above, two equations are used to define that relation to avoid numerical problems in the solver.

Specifially, the global bank mechanism aims at equalizing the expected net returns rore across regions by changing the distribution of foreign savings fsav to the different regions. In the benchmark, a risk parameter risk ensures that the average global return rorg are lined up with the expected returns in each region rore. Assume now that the price of mobile capital in a region after direct taxes increases, e.g. by tax reform. That will increase the expected returns and thus attract foreign saving. Increasing the foreign savings in a region will in turn increase total savings and thus investments xi. That will change the end of period capital kapEnd which will affect the relation between end and beginning stock and thus decrease expected rate rore.

The value of global net investment gblValNetInv as defined in the equation gvlValNetInvEq is derived from the regional net investments netInv, their regional prices pi and the exchange rate lcu, part of equation (82) in VDM 2018:
Note the distinction between regions in the current solve rs, in case the model is run in single country mode or the pre-processing is used, and those exogenous.

Regional net investments netIn as defined in the netInvEq, part of equation (86) in VDM 2018, are equal to aggregated gross investment demand xi minus depreciation, i.e. the depreciation rates fdepr times the beginning of year capital stocks kStock:

The total global net investments xigl are defined in the equation xigbleq as the summing up of the regional net investments netIn, equation (86) in VDM 2018:

The average global expected returns to capital rorg is the value – net investment netinv times saving prices pi – weighted average of the regional expected returns rore as defined in the two equation rorgeg and gblValNetInv1Eq:

The distribution of the net investments in case of the global bank mechanism (RoRFlag eq equalReturnToInv) is steered by the first part of the following savfeq, equation (80) in VDM 2018, which requires for each region that risk adjusted expected returns are equal to the global average:

2.11.2 Fixed allocation of foreign savings

That case is depicted in the second block of the equation savfeq if the RoRFlag is set equal to “fixedAllocationOfInv” and is based on given parameters chiInv which reflect the benchmark distribution. Note that the mechanism refers to “capShrFix” in VDM 2018:
Note that the residual region is excluded from the mechanism and defined via the capital account balance.

2.11.3 Capital account and balance of payments

The capital account balance \(\text{capAcctEq} \), equation (84) in VDM 2018, ensures that the sum of the foreign savings \(\text{savn} \) is zero:

\[
\text{sum}(savn(r,t)) = 0
\]

The equation is only active if (1) there are at least two countries in the current solve where foreign savings are not fixed or (2) the residual region is in the current solve and the foreign savings for the other regions are fixed and the global model is used (not singleCountry) or the numeraire is not fixed.

The balance of payments equation \(\text{bopEq} \) is only a check for the correct setup of the model, i.e. the \(\text{bopSlack} \) should be equal to zero given the accuracies of the solver and original tiny numerical imbalances in the SAM:

\[
\text{sum}(savn(r,t)) = 0
\]

2.12 Demand sub-nests

Demand sub-nests aggregate individual Armington demands in final demand by private household, government or savings to aggregates based on CES utility function. The resulting nests can be either part of the top level demand function of the function or linked into other demand nests. That mechanism allows increasing the flexibility of depicting substitution relations between individual products.

The average price for a demand nest \(\text{pdNest} \) for the nest \(\text{dNest} \) and the demand agent \(\text{fdn} \) is defined by dual price aggregators which distinguish the CD from the CES/Leontief case depending on the substitution elasticity \(\text{sigmaFDNest} \). In both cases, the price index reflects the contribution of individual products \(i \) based on their share parameter \(\text{alpha} \) and the contribution of sub-nests based on their share parameter \(\text{alphaDN} \).
In mathematical notation:

\[
P_{dNest} = \left[\sum_{i \in dNest} \alpha_{dNest} \left(\frac{P_{dNest, i}}{P_{r, i, dNest}} \right)^{\frac{\sigmaFDNest}{\sigmaFDNest}} + \sum_{dNest \in dNest} \alpha_{dNest, dNest} \left(P_{dNest, dNest, fdn} \right)^{\frac{1}{1-\sigmaFDNest}} \right]^{\frac{1}{1-\sigmaFDNest}}
\]

With the list of final demands \(fdn = \{gov, inv, h\}\)

The notation already underlines that such nests can comprise other nests.

The demand for a sub-nest \(xdNest\) depends on the total demand (inv or gov) or is driven by a sub-nest:

For the final household case with a CDE demand function (see dem_cde.gms), the following equation is used:

The Armington demands \(xa\) driven by a sub-nest are defined in the equation \(xdDNesteq\) and use the usual CES-structure, i.e. the share parameter \(alpha\), the sub-nest total demand \(xdNest\) and the price relation exponent the substitution elasticity \(sigmaFDNest\) as well a preference shifter \(lambda\):
International trade and domestic sales, and related prices

2.13 International trade and domestic sales, and related prices

2.13.1 Overview
The model uses in its standard layout a two-stage Armington system where the shares of the lower nests representing bi-lateral imports are identical across the different Armington agents. The Armington approach can be complemented by a CET to distribute supply in each region based on finite transformation. Alternatives to the standard layout in demand are: a further aggregation in the Armington system where also the upper nested is shared across sectors or across all agents, the "MRIO extension" and the heterogenous firm extension, see the sub-section “Melitz model”.

The graphic below depicts these main relations in international trade and the distribution of supply. The top level Armington nest in the uppermost box distributes the Armington demand for each agent to demand from domestic origin and imports. Next, these demands are aggregated over the agents. The total import demand is then split up into demands of the different exporters x_{w}, driven by the cif price plus import taxes. The difference between the cif and fob price are the endogenous transport margins. Taking export taxation or subsidization into account, the export prices p_{e} in each exporter region are derived.

Distribution of supply x_{s} to total exports x_{et} and domestic sales x_{ds} is driven by a transformation nest depicted in the lowest box. The transformation can also be infinite as the default case. Distribution of the total exports x_{et} to different destination x_{w} is handled by a second transformation nest, again, with infinite transformation as the default case.
Figure 3: Overview on distribution of supply and sourcing of demand

Note that the set of Armington agents depends on the chosen structure of the model:

1. In the default layout, it comprises the list of sector, one aggregate private household, government and investment demand

2. Alternative, that differentiation can be completely removed, i.e. the shares in the upper nests are identical for each agent, or can be defined identical across sectors.

The “MRIO extension” introduces an own set of equations (see sub-section “Model equations”) which allows to dis-aggregate also the lower Armington nests, i.e. the bi-lateral demands, by agent.

Furthermore, note that the Melitz and Krugmann extensions use one nest only considering love-of-variety.

2.13.2 Individual equations

The agent specific prices for imports \(p_{mp} \) as defined in the equation \(p_{mpeq} \), equation (46) in VDM 2018, reflects the average import price \(p_{mt} \) and agent specific import taxes \(m_{intx} \) plus tax shifts \(itx_{shift} \) and emission taxes:

\[
p_{mpeq}(\text{Mat},i,\text{ln}(1),\text{aa},\text{t}(t)) \equiv \frac{\text{alpha}(\text{Mat},i,\text{aa},t)}{\text{m} \text{t}(\text{Mat},i,\text{t})} \times (1 + m_{intx}(\text{Mat},i,\text{aa},t) + itx_{shift}(\text{Mat},aa,t) + i\text{tax}_{shift}(t))
\]
International trade and domestic sales, and related prices

Note that the equation is not active if the “MRIO extension” is switched on for that product (not \(iMrio(i) \)) as in that case, the basis to derive the agent specific is specific to group of agents and not equal to \(pmt \).

Equally, the equation requires that the share parameters for imports \(\alpha_m \) is not zero. The Melitz extension sets the share parameter to zero for the production handled in the Melitz model and thus also the removes the equation for these products. Finally, the model will for the default case substitute out the \(pmp \) prices for intermediate demand (not \(a(aa) \)).

Similar, the agent specific prices for domestic origin \(pdp \) reflect price in the domestic markets, defined in the equation \(pdeq \), equation (45) in VDM 2018. These are equal to sectoral prices \(ps \) under infinite transformation or equal to domestic sales prices \(pd \) in case of non-infinite transformation. Taxes are added as in the case imports above:

\[
pdp_{\text{rNat}}(\text{rNat}, l, i, t) \rightarrow \begin{cases}
\alpha_m \text{rNat}(l, i) \text{rNat}(\text{rNat}, l, i) & \text{if } a(aa) \text{ or sum(summas(aa, aln, i), l)} \text{ or gmpd(l, a, t) or gmpd(l, a, t) or gmpd(l, a, t)} \\
\text{add } \text{pmt} \text{rNat}(l, i) & \text{else}
\end{cases}
\]

Note again that the Melitz extension will delete the \(\alpha_d \) parameters for the products handled by imperfect competition to replace the equation \(pdeq \) as it uses a different pricing system.

The Armington price of the different agents \(pa \) is defined in the \(paeq \), equation (47) in VDM 2018. That dual price aggregator as usually reflects the given shares for domestic \(\alpha_d \) and imported \(\alpha_m \) origin and the related prices as defined above as well as the substitution elasticity between imports and domestic origin \(\sigma_m \) which is not agent specific:

\[
paeq_{\text{rNat}}(\text{rNat}, l, i, a, t) \rightarrow \begin{cases}
\alpha_d \text{rNat}(l, i) \text{rNat}(\text{rNat}, l, i) & \text{if } a(aa) \text{ or sum(summas(aa, aln, i), l)} \\
\text{add } \text{pmt} \text{rNat}(l, i) & \text{else}
\end{cases}
\]

Note here that the equation is normally substituted out if only domestic or import demand is present. That is not the case if the standard GTAP layout is used or the substitution is explicitly switched off on the interface.

Domestic demand \(xd \) by the different agents is driven by the share parameter \(\alpha_m \) and times the total Armington demand defined in the macro \(m_xa \), times the price relation exponent the substitution elasticity, as defined in the equation \(xdeq \), equation (48) in VDM 2018:

\[
xd_{\text{rNat}}(\text{rNat}, l, i, t) \rightarrow \begin{cases}
\alpha_m \text{rNat}(l, i) \text{rNat}(\text{rNat}, l, i) & \text{if } a(aa) \text{ or sum(summas(aa, aln, i), l)} \\
\text{add } \text{pmt} \text{rNat}(l, i) & \text{else}
\end{cases}
\]

It is linearly aggregated over agents to total domestic sales \(xds \) in the equation \(pdeq \), equation (67) in VDM 2018:

\[
xd_{\text{rNat}}(\text{rNat}, l, i, t) \rightarrow \begin{cases}
\alpha_m \text{rNat}(l, i) \text{rNat}(\text{rNat}, l, i) & \text{if } a(aa) \text{ or sum(summas(aa, aln, i), l)} \\
\text{add } \text{pmt} \text{rNat}(l, i) & \text{else}
\end{cases}
\]
Imported demand by each agent \(x_m \) is defined accordingly in the equation \(x_{meq} \), equation (49) in VDM 2018:

\[
x_{meq}(r\text{Nat}(i),\text{lin}(i),\text{aa},t) \; \left\{ \begin{array}{l}
(\text{alph}\text{a}(r\text{Nat}(i),\text{aa},t) \text{ or } \text{gtag}(i,t)) \; \\text{alph}\text{a}(r\text{Nat}(i),\text{aa},t) \; \left(\text{not } a(i) \text{ or } \text{sum} \left(\text{demand}(a(i),i),a(i) \right) \right) \;
\text{x}(r\text{Nat}(i),\text{aa},t)/\text{scale}(r\text{Nat}(i),\text{aa},t);
\end{array} \right.
\]

Total import demand \(x_{mt} \) is in the equation \(x_{mteq} \) is defined as an adding up over the demand of the individual Armington agents, equation (50) in VDM 2018:

\[
x_{mteq}(r\text{Nat}(i),\text{lin}(i),t) \; \left\{ \begin{array}{c}
\text{sum}(a(i) \text{ alph}(r\text{Nat}(i),\text{aa},t), a(i) \text{ x}(r\text{Nat}(i),\text{aa},t))/\text{scale}(r\text{Nat}(i),t);
\end{array} \right.
\]

The bilateral cost, insurance and freight prices \(p_{mcif} \) are defined by the equation \(p_{mcifeq} \) and the macro \(m_{p_{mcif}} \). As the default, these prices are substituted out from the model. The \(rr\text{Comb} \) set is used in case of only one region being solved to depict the bi-lateral trade links to include.

\[
p_{mcifeq}(r\text{Nat}(i),\text{lin}(i),r\text{Nat}(i),t) \; \left\{ \begin{array}{c}
\text{m}_{p_{mcif}}(r\text{Nat}(i),t) \; \left(\text{m}_{x}\text{flag}(r\text{Nat}(i),t) \; \text{rr\text{comb}(r\text{Nat}(i),r\text{Nat}(i))) \; \right) \;
\end{array} \right.
\]

The macro \(m_{p_{mcif}} \) is defined as follows, equation (65) in VDM 2018:

\[
\text{m}_{p_{mcif}}(r\text{Nat}(i),t) = \text{m}_{x}\text{flag}(r\text{Nat}(i),t);
\]

It converts the bilateral fob (free on board) price defined in the macro \(m_{p_{efob}} \) to international currency (division by \(lcu \)) and adds the per unit transport margin cost in international currency. These costs are defined as the transport mode \(m \) (see, air ...) specific shares \(amg\text{m} \) on the given transport margin \(t_{marg} \), updated with the mode specific average global price for that mode \(p_{tmg} \). The mode specific costs can be shifted by \(m_{lambdang} \). The resulting costs - fob plus transport margin – in international currency and finally converted in local currency again by the multiplication by \(lcu \).

Note that with a dense bi-lateral trade matrix, the number of variables relating to bi-lateral realtions increases quadratic in the number of regions and linear in the number of sectors. Under full density, using 50 regions and 50 sectors implies hence 50x50x50 = 125.000 non-zero elements for each variable defined bi-laterally. That explains why substitutions of the e.g. the f.o.b. and c.i.f. prices and the bi-lateral trade margins can dramatically reduce model size.

Bilateral **free on board prices** \(p_{efob} \) are defined by the macro \(mm_{p_{efob}} \), equation (64) in VDM 2018. They reflect: bilateral export taxes \(ex\text{pt} \) and a product specific export tax shifter \(et\text{ax} \) levied on the relevant price which depends if and how a transformation of output is used as seen below. If no CET approach is used, the supply price \(ps \) is the basis for fob calculation. In case there is only a CET between total exports and domestic sales, but none between bi-lateral export flows, the average price of exports \(pe\text{t} \) is used, otherwise, bi-lateral export prices \(pe \) define the basis for fob prices.
International trade and domestic sales, and related prices

Similar to the case of cif prices, the fob prices pefob are defined from that macro in the equation pefobeq. Again, the default case is that these equations are substituted out from the model.

The user can define on the interface if these prices are substituted from the model.

The average price of imports pmt is defined in the equation pmteq, equation (52) in VDM 2018, and considers three cases. The first case applies for substitution elasticity different from unity and for shares not considered small. It uses the standard dual price aggregator using the bilateral demand share parameters amw, the cif price defined by %pmcif% plus bilateral import taxes imptx plus a product specific import tax shifter mtax and reflects a preference shifter defined in the macro m_lambdam. The second case uses the dual price aggregator for the CD case where the substitution elasticity is unity. The third case reflects small shares which are treated a la Leontief.

Note that the single country case can either use the lower level Armington / CET equations of the trading partner of the country solved, or use import and export elasticities. To host that case, the pmteq equation will not be introduced in the model if import prices are elasticity driven.

The allocation of total imports xmt to the bi-lateral imports xw is defined in the equation xweq, equation (52) in VDM and is based on the share parameters amw, the substitution between origins sigmaw and the relevant price relation, i.e. the average import price pmt divided by the cif price %pmcif% plus bi-lateral import taxes imptx plus a potential import tax shifter mtax. Preference shifters as defined in the macro m_lambdam can be used as well.
Note that in opposite to VDM 2018, the import price defined in equation (66) is always substituted out.

That macro \(m_\text{lambdam} \) is introduced to avoid that for each bi-lateral trade link in the model, a variable must be fixed to unity if no shifter is present. It thereof introduces unity in the equation – see first line below - if the shifter is not initialized, i.e. equal to zero and not fixed. The shifter variable is used if it either fixed, i.e. the range is zero, or its starting value is not zero.

Similar macros are used for other shifter variables as well.

As the model allows non-infinite transformation of outputs, the following equation \(x\text{dseq} \) (implicitly), equation (53) in VDM 2018, defines domestic sales \(xds \). The first case is that of infinite transformation as found in the GTAP standard model where by definition the prices of domestic sales \(pd \) is equal to the average supply prices \(ps \). The second case distributes total supply \(xs \) of a product to domestic sales based on the share parameter \(gd \) and the relation between the domestic sales price and average supply times exponent the transformation elasticity \(\omega_{\text{x}} \):

A similar equation defines total exports \(x\text{et} \) in the equation \(x\text{eteq} \), equation (54) in VDM 2018. The relevant share parameter is \(ge \) while the average price of exports is called \(pet \):

Note the special case for the single country model where exports are driven by an export elasticity.

The average supply price \(ps \) is defined in the equation \(x\text{seq} \), equation (55) in VDM 2018. In case of infinite transformation and thus a linear aggregator – the first block – the sum of domestic sales \(xds \) and exports \(xet \) must be equal to physical output \(xs \). In case of not-infinite transformation, a dual price aggregator is used based on the share parameters \(gd \) and \(ge \), related prices \(pd \) and \(pet \) and the transformation elasticity \(\omega_{\text{x}} \):

Bilateral export supply is by definition equal to bilateral export demand \(xw \), that equality is used to define indirectly the bilateral export price \(pe \) in case of non-infinite transformation in the first block, as
defined in the equation \(p_{eq} \), equation (56) in VDM 2018. Otherwise, bilateral export prices \(p_e \) and the average export prices \(p_{et} \) are by definition equal:

\[
p_{eq}(\text{Nat, i}, \text{Nat, j}, \text{t}) \triangleq \text{mFlag}(\text{Nat, i}, \text{Nat, j}, \text{t}) \lor \text{pFlag}(\text{Nat, i}, \text{Nat, j}, \text{t}) \lor \text{rComb}(\text{Nat, i}, \text{Nat, j}, \text{t})
\]

The aggregate price of export \(p_{et} \) defined in the equation \(p_{eq} \), equation (57) in VDM 2018, is either defined from a dual price aggregator in case of non-infinite transformation or equal to the supply price \(p_{s} \) in case of infinite transformation. Note the inclusion of the special case of small export shares handled via Leontief:

\[
p_{et}(\text{Nat, i}, \text{t}) \triangleq \text{mFlag}(\text{Nat, i}, \text{t}) \lor \text{pFlag}(\text{Nat, i}, \text{t}) \lor \text{rComb}(\text{Nat, i}, \text{t}) \lor \text{mFlag}(\text{Nat, i}, \text{t}) \lor \text{rComb}(\text{Nat, i}, \text{t})
\]

The global demand for transport services \(x_{tg} \) of mode \(m \) is based on a Leontief approach and defined in the equation \(x_{tmg} \), summarizing equations (58), (59) and (61) in VDM 2018. The given bi-lateral transport margin demand \(t_{marg} \) are distributed to the different transport modes \(m \) based on the share parameter \(a_{mg} \) and multiplied with the bilateral transport flows defined in the macro \(m_xw_s \), reflecting a potential demand shifter \(m_{lambda mg} \). Note that substitution is between regions providing shares on international transport by transport mode, and not between different modes:

The region specific demand for each transport mode \(x_{a} \), defined in equation \(x_{atm} \), equation (62) in VDM 2018, is based on a CES demand system which reflects the average global price for each transport mode \(p_{gtm} \) and the regional specific price defined in the macro \(m_{pa} \) and the substitution elasticity \(\sigma_{mg} \):

The global average price for each transport mode \(p_{gtm} \) is defined in the equation \(p_{tmg} \), equation (63) in VDM 2018, via a dual price aggregator which distinguishes the CD and CES/Leontief case:

\[
p_{tmg}(\text{Nat, t}) \triangleq \left\{ \begin{array}{ll}
\text{alpha}(\text{Nat, t}, \text{w}, \text{mg}) & \text{if } \text{mFlag}(\text{Nat, t}, \text{w}, \text{mg}) \\
\text{beta}(\text{Nat, t}, \text{w}, \text{mg}) & \text{if } \text{pFlag}(\text{Nat, t}, \text{w}, \text{mg}) \\
\text{rComb}(\text{Nat, t}, \text{w}, \text{mg}) & \text{if } \text{rComb}(\text{Nat, t}, \text{w}, \text{mg})
\end{array} \right.
\]

2.13.3 Melitz model

The methodological details of the Melitz extension are described in a separate document. In here, only the equations are briefly discussed (see GtapMelitz\GtapMelitz_model.gms).
The Armington price of each agent for a product $iMel$ included in the Melitz model as shown in equation e_pamel below uses the usual CES dual price aggregator, however, the share parameters $amel$ are updated which changes the number of firms operating on the trade link to yield a different type of price aggregator. The number of firms is defined via the macro $m_nFirmOp$, while the numbers of firms operating under the benchmark is stored in the parameter $p_nFormsOp0$.

$$e_pamel[iMel(i),aa,t,t] = \left\{ \begin{array}{ll} & \text{if share parameter is not fix,} \\
& \text{compute share parameter with the number of firms operating.} \\
\end{array} \right.$$

The Melitz extensions allows to treat domestic sales of intermediates to same industry, i.e. the diagonal I/O element, different from the other agents by removing the love of variety effect and thus also the price markup. That has shown to help in many cases where the solver ran into infeasibilities. If that mechanism is active for a specific region, agent and product is depicted by the $mFlag$. In the equation above, in that case, a constant of unity $(+1 \cdot mFlag[pMat,aa,i])$ is introduced in the equation instead of updating the share parameters by the number of farms of operating.

The relevant prices for the agents are depicted in the two macros $m_pAgentm$ for bi-lateral import links and $m_pAgentd$ for the domestic sales case.

The bi-lateral import case uses the c.i.f. price plus import and emission taxes:

Note that the basis for the f.o.b. price from which the c.i.f. price is derived are the prices charged by the average firm on the trade link defined by the macro m_pFirm for Melitz products $iMel(i)$ as shown in the macro below:

Total import demand xm as defined in the equation e_xmMel for each Armington agent aa is the sum over the agent specific bi-lateral Armington demands, which are driven by relation of average Armington price pa as defined in the e_pamel equation above and the bi-lateral price defined in the macro $m_pAgentm$, exponent the substitution elasticity $p_sigmaMel$. Note again that the share parameter is not fix, but the product of the share parameter at the benchmark $amel$ and the change in the number of firms operating on that trade link:

The domestic demand is defined symmetrically in the e_xdMel equation:
As mentioned already above, the Melitz extensions allows to treat domestic sales of intermediates to same industry, i.e. the diagonal I/O element, different from the other agents by removing the love of variety effect and thus also the price markup. That has shown to help in many cases where the solver ran into infeasibilities. In that case, the following simpler equation \(e_{xd\text{ddMel}} \) defines the domestic demand by the same industry for its own output:

\[
e_{xd\text{ddMel}}(\text{ rpN}at, \text{iMel}(i), \text{aMel}(a), \text{t}(t)) \sim (\text{aMel}(\text{rpN}at, i, a, t) \sim \text{ not } \text{mFlag}(\text{rpN}at, a, i)) \sim (\text{not } a(a)) \sim ...
\]

\[
\times p(\text{rpN}at, i, a, t)/\text{w}_{\text{h}}\text{pont}(\text{rpN}at, i, a, t)) \times \text{p}_{\text{SigmaMel}}(\text{rpN}at, i, \text{T}path)/\text{scale}(\text{rpN}at, i, a, t);
\]

The total demand for domestic produce \(xds \) subject to price markups is defined by adding up over the domestic demands in the \(e_{xd\text{Melf}} \) equation, however, without the diagonal intermediate demand case if the \(m\text{Flag} \) is active:

\[
e_{xd\text{Melf}}(\text{rpN}at, \text{iMel}(i), \text{aMel}(a), \text{t}(t)) \sim (\text{not } \text{mFlag}(\text{rpN}at, a, i)) \sim \text{aMel}(\text{rpN}at, i, a, \text{t}(t)) \sim ...
\]

\[
\times p(\text{rpN}at, i, a, t)/\text{w}_{\text{h}}\text{pont}(\text{rpN}at, i, a, t)) \times \text{p}_{\text{SigmaMel}}(\text{rpN}at, i, \text{T}path)/\text{scale}(\text{rpN}at, i, a, t);
\]

The total bi-lateral demand is defined accordingly as an adding up over the agents’ bi-lateral demands in the equation \(e_{xwmelf} \). In the Melitz case, it defines the average output of the firms being active on that link. Alternatively, the equation structure can be used to use one Armington nest, only, which allows quantifying the impact on model solution compared to the usual two-stage Armington system. In that case, the equation drives the bi-lateral demands \(xw \).

\[
e_{xwmelf}(\text{rpN}at, \text{iMel}(i), \text{rNatl}(t), \text{t}(t)) \sim (\text{w}_{\text{FlagMel}}(\text{rpN}at, i, \text{rNatl}(t)) \sim \text{rr}_{\text{Comb}}(\text{rpN}at, \text{rNatl}(t))) \sim ...
\]

\[
\times p(\text{rpN}at, i, a, t)/\text{w}_{\text{h}}\text{pont}(\text{rpN}at, i, a, t)) \times \text{p}_{\text{SigmaMel}}(\text{rpN}at, i, \text{T}path)/\text{scale}(\text{rpN}at, i, a, t);
\]

The fix cost price is equal to the price of the fix cost nest “fCost” if a separate fix cost nest is active. Otherwise, the fix cost price is defined in the \(e_{FCostP} \) equation as equal to unit costs of production plus production taxes:

\[
e_{FCostP}(\text{rNat}(r), \text{fCost}(r), \text{aNatl}(t)) \sim (\text{sum}(\text{fCost}(r), \text{aNatl}(t)) \sim \text{w}_{\text{Flag}}(\text{rNat}(r), \text{aNatl}(t))) \sim ...
\]

\[
\times (\text{p}_{\text{Cost}}(\text{rNat}(r), \text{aNatl}(t)) \sim \text{w}_{\text{h}}\text{pont}(\text{rNat}(r), \text{aNatl}(t)) \sim \text{p}_{\text{SigmaMel}}(\text{rNat}(r), \text{aNatl}(t))) \times \text{w}_{\text{scale}}(\text{rNat}(r), \text{aNatl}(t));
\]

The price markup on each trade link is indirectly defined in \(e_{MKUP} \) equation by the endogenous average firm productivity \(\phi_{Firm} \) and the price charged by the average firm \(p_{Firm} \), reflecting changes in supply price \(ps \):

\[
e_{MKUP}(\text{rpN}at, \text{iMel}(i), \text{rNatl}(r), \text{t}(t)) \sim (\text{w}_{\text{Flag}}(\text{rpN}at, i, r, t) \sim \text{w}_{\text{h}}\text{pont}(\text{rpN}at, i, r, t)) \sim \text{p}_{\text{Range}}(\text{rpN}at, i, r, t) \sim 0 \sim ...
\]

\[
\times p(\text{rpN}at, i, r, t) \sim \text{p}_{\text{Cost}}(\text{rpN}at, i, r, t)/(1 - \text{p}_{\text{SigmaMel}}(\text{rpN}at, i, r, t));
\]
The endogenous number of firms entering the industry \(m_{\text{FirmsEnt}} \) is defined as follows:

\[
\text{e}_{\text{firmsEnt}}(\text{rNat}, \text{iMol}, \text{l}, \text{t}, \text{t0}) \equiv (p_{\text{MFirmsEnt}}(\text{rNat}, \text{iMol}, \text{l}) \wedge \ldots
\]

\[
\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots
\]

Note the difference between the Melitz set-up where fix costs and mark-ups are trade link specific and the Krugman model where only industry wide fix costs are present.

In the Krugman model, only the total industry size \(M_{\text{FirmsEnt}} \) changes and updates also the number of firms being active on each trade link \(n_{\text{FirmsOp}} \) as defined by \(e_{\text{krug}} \) equation:

\[
e_{\text{krug}}(\text{rNat}, \text{iMol}, \text{l}, \text{r}, \text{t}(\text{t})) \equiv (\text{wFlag}(\text{rNat}, \text{iMol}, \text{l}) \ldots
\]

The number of firms operating on a trade link in the Melitz case is defined by the zero-cutoff profit equation \(e_{\text{ZCP}} \). The LHS defines the fixed cost on that trade link, i.e. the given total benchmark fix cost \(p_{\text{fc}} \) updated with changes in the fix cost price \(pt_{\text{Nest}}(\text{fCost}) \). The RHS ensures that these fix costs are exhausted by the number of firms being active, reflecting the productivity distribution:

\[
e_{\text{PAR}}(\text{rNat}, \text{iMol}, \text{l}, \text{r}, \text{t}(\text{t})) \equiv (\text{wFlag}(\text{rNat}, \text{iMol}, \text{l}) \ldots
\]

The pareto productivity \(\phi_{\text{Firm}} \) which enters the price markup equation is defined in the equation \(e_{\text{PAR}} \).

Variable cost exhaustion is ensured by the \(e_{\text{MKT}} \) equation:

\[
e_{\text{MKT}}(\text{rNat}, \text{iMol}, \text{l}, \text{t}, \text{t0}) \equiv (\text{wFlag}(\text{rNat}, \text{iMol}, \text{l}) \ldots
\]
International trade and domestic sales, and related prices

Note that the total output comprises fix cost input demand if no separate fix costs nest is active. Therefore, these costs are added for that case, see the line starting with $$ifi.$$

Fix costs are defined as follows in the \(e_{\text{fCost}} \) equation. They consist of industry wide fix costs, i.e. the endogenous number of firms in the industry \(M\text{FirmEnt} \) times the given fix costs per firm \(p_{\text{delt_fs}} \), plus the given fix cost on each trade link \(p_{\text{fc}} \) times endogenous number of the firms operating on the link defined by the \(m_{\text{NFirmsOp}} \) macro:

\[
\begin{align*}
\text{e}_{\text{fCost}}(\text{rNat}, t) = & \text{sum} (\text{mFlag}(\text{rNat}, a, t) \times \text{e}_{\text{fCost}}(\text{rNat}, a, t)) \times \text{wxNet}(\text{rNat}, a, t) / \text{wxNet}(\text{rNat}, t) \times \text{wxNet}(\text{rNat}, t) \\
& \text{fix costs times \# of existing firms} \\
& \text{\# of firms operating on the different markets times} \\
& \text{(1) bilateral fix cost per firm} \\
& \text{(2) iceberg cost of output per firm \(p_{\text{tau}} \) times output per firm \(\text{QAVFirm} \), corrected for average productivity} \\
& \text{sum (rNat, i, t) = } \text{wxFlag}(\text{rNat}, i, t) \times \text{QAVFirm}(\text{rNat}, i, t) \times \text{wxNet}(\text{rNat}, i, t) \times \text{wxNet}(\text{rNat}, t) \times \text{wxNet}(\text{rNat}, t)
\end{align*}
\]

There is a block of equations which defines variables used elsewhere in the model, but not defined by the equation in the Melitz model:

Note that the average price of imports is defined from the total value \(wmt \) in the \(e_{\text{pmtMel}} \) equation:

\[
\begin{align*}
\text{e}_{\text{pmtMel}}(\text{rNat}, t) = & \text{sum} (\text{wxFlag}(\text{rNat}, i, t) \times \text{wxNet}(\text{rNat}, i, t)) / \text{wxNet}(\text{rNat}, t) \\
& \text{average import prices times total import quantities (Armitage aggregate, not physically)} \\
& \text{not that PMT in standard GTAP model is unity, but not in here)} \\
\text{wmt}(\text{rNat}, i, t) = & \text{sum} (\text{wxFlag}(\text{rNat}, i, t) \times \text{wxNet}(\text{rNat}, i, t)) / \text{wxNet}(\text{rNat}, t) \\
& \text{value of total imports, defined from value of each import flow} \\
& \text{sum of import margins and the original border protection,} \\
& \text{wxNet}(\text{rNat}, t) \times \text{wxFlag}(\text{rNat}, i, t) \\
& \text{wxNet}(\text{rNat}, t) \\
& \text{wxNet}(\text{rNat}, t) \\
& \text{wxNet}(\text{rNat}, t)
\end{align*}
\]

And the following equation \(e_{\text{wmt}} \):

\[
\begin{align*}
\text{e}_{\text{wmt}}(\text{rNat}, t) = & \text{sum} (\text{wxFlag}(\text{rNat}, i, t) \times \text{wxNet}(\text{rNat}, i, t)) \times \text{mScale}(\text{rNat}, t) \\
\text{wmt}(\text{rNat}, i, t) = & \text{wxNet}(\text{rNat}, i, t) \times \text{mScale}(\text{rNat}, t)
\end{align*}
\]
In order to check for the correct functioning of model, a revenue check equation `e_revCheck` is introduced:

\[
\text{revCheck}(\text{Nat}, t) = \sum_a \left(x\text{flag}(\text{Nat}, a) \times p_s(\text{Nat}, t) \right)
\]

The variable `revCheck` on the LHS should yield a zero in the benchmark and under a simulation. It adds what the agents pay for domestic and import purchases while paying the prices charged by the average firm, minus variable production costs, i.e. production output `m_xp` times the supply price `p_s`, adds remuneration for own intermediate consumption if the `mFlag` is present, and finally subtracts fix cost.

2.14 Price indices

The model defines different price indices which can be used as regional (or global) numeraires and/or for reporting purposes.

Average factor prices `p_f` and total stock `s_t` for non-non-mobile factors, are defined in the `pftFnmEq`:

\[
pftFnmEq(r; s_t, t) = \left(x\text{flag}(r, s_t, t) / \text{sum}(a; x\text{flag}(r, s_t, a)) \times x\text{scale}(r, s_t, a) \right)
\]

Regional factor price indices `pFact` are defined in the equation `pfacteq` based on factor prices `p_f` and weights `phif` and are used to define them in the benchmark, whereas in shock or follow up years, equations (93) and (94) in VDM 2018:

\[
pFact(r; s_t, t) = \left(\text{sum}(a; x\text{flag}(r, s_t, a)) \times x\text{scale}(r, s_t, a) / \text{sum}(a; x\text{flag}(r, s_t, a)) \right)
\]

The average world price of factors `pwfact` as defined in the equation `pwfacteq` uses weights `phifw` and reflects the exchange rates `lcu` to aggregate the regional factor prices `p_f`. It is global numeraire price in the model, equations (95) and (96) in VDM 2018.
Regional producer price indices pp_{prod} as defined in the equation pp_prodeq are based on weights phi_{i}:

$$pp_prodeq(r_st_at_t, t_st_t) = \{ (pp_prod, range(r_st_at_t) no 0) or (not range(r_st_at_t) no 0) \} \cdot \frac{\sum_{i=1}^{i_{max}} \phi_{i}(r_st_at_t, t_st_t) \cdot p_{a}(r_st_at_t, t_st_t, f_{i})}{\sum_{i=1}^{i_{max}} \phi_{i}(r_st_at_t, t_st_t)}$$

Average domestic consumption prices p_{abs} are an average of the Armington prices for the different types of final demand fd (final demand prices for households, government, investment and domestic supply of trade margins) and weights phi_{a}. That is an approximate version of equation (90) in VDM 2018. That price index is not used elsewhere in the model.

2.15 List of main prices in model

Table 3: Prices in model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Content</th>
<th>Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>px</td>
<td>Unit costs of production</td>
<td>r,a,t</td>
</tr>
<tr>
<td>pp</td>
<td>Producer price</td>
<td>r,a,t</td>
</tr>
<tr>
<td>pva</td>
<td>Price of value added composite</td>
<td>r,a,t</td>
</tr>
<tr>
<td>pnd</td>
<td>Price of intermediate bundle</td>
<td>r,a,t</td>
</tr>
<tr>
<td>pf</td>
<td>Activity specific factor price, tax exclusive</td>
<td>r,f,a,t</td>
</tr>
<tr>
<td>pfa</td>
<td>Activity specific factor price, tax inclusive</td>
<td>r,f,a,t</td>
</tr>
<tr>
<td>ptnest</td>
<td>Price of technology nest</td>
<td>r,t,Nest,a,t</td>
</tr>
<tr>
<td>pft</td>
<td>Aggregate price of factors</td>
<td>r,f,t</td>
</tr>
<tr>
<td>p</td>
<td>Price of output</td>
<td>r,a,i,t</td>
</tr>
<tr>
<td>ps</td>
<td>Price of domestic supply</td>
<td>r,i,t</td>
</tr>
<tr>
<td>pe</td>
<td>Prices for bilateral export supply</td>
<td>r,i,rp,t</td>
</tr>
<tr>
<td>pet</td>
<td>Average price of export supply</td>
<td>r,i,t</td>
</tr>
<tr>
<td>pefob</td>
<td>Border price of exports (free on board)</td>
<td>r,i,rp,t</td>
</tr>
<tr>
<td>pmcif</td>
<td>Border price of imports (cost, insurance, freight)</td>
<td>r,i,rp,t</td>
</tr>
<tr>
<td>pm</td>
<td>Bilateral price of imports, tax inclusive</td>
<td>r,i,rp,t</td>
</tr>
<tr>
<td>pmt</td>
<td>Average price of imports</td>
<td>r,i,t</td>
</tr>
<tr>
<td>pmtMrio</td>
<td>Price of aggregate imports, by mrio agent</td>
<td>r,i,mrioA,t</td>
</tr>
<tr>
<td>pd</td>
<td>Price of domestically produced good</td>
<td>r,i,t</td>
</tr>
<tr>
<td>pdp</td>
<td>Purchaser price of domestic good</td>
<td>r,i,aa,t</td>
</tr>
<tr>
<td>pdNest</td>
<td>Price aggregator for sub-nest below final demand equations</td>
<td>r,d,Nest,fd,t</td>
</tr>
</tbody>
</table>
2.16 Flexible nesting

While most CGE models apply the CES functional form to depict the production function, quite some differences exist how input composites are defined. Usually, each nest is represented in the model’s programming code by its own quantity and price aggregator equation. Adding or changing nests thus requires coding efforts – new variables, equations and parameters need to be defined and properly assigned. Typically, also the equations relating to the top level value added aggregator and/or the intermediate demand nest need to be adjusted if the nesting is changed.

The GAMS code underlying the GTAP in GAMS project applies a different strategy. Here, nested CES structures in the production function are represented by a generic approach where a small number of equations and matching variables handle basically all possible nesting structures. The equations for the top level VA and ND nests as discussed above are already set-up to host sub-nests along with equations describing sub-nests. In the standard GTAP-implementation, such sub-nests are not present and these equations empty.

That flexible and generic nesting approach is based on sets and cross-sets in GAMS which define the lists of factors, intermediates and sub-nests comprised in a CES composite nest along with the top nest it belongs too. These nesting definitions enter the equations in the core model mentioned above and matching code dealing with parameter calibration. Hence, the user does not need to introduce additional equations in the code to use that feature – it is sufficient to provide the structure of the nesting to be applied via set definitions and the related substitution elasticities. The code also tests for potential errors such as duplicate assignments or sub-nests not linked into another nests.

The following examples should be sufficient to show the application of that feature and demonstrate its flexibility.

1. An example of a sub-nest under the top VA nest which aggregates the two labor categories found in the GTAP 8 data base into an aggregate:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Content</th>
<th>Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa</td>
<td>Armington prices</td>
<td>r,i,aa,t</td>
</tr>
<tr>
<td>pm</td>
<td>Bilateral price of imports, tax inclusive</td>
<td>r,i,rp,t</td>
</tr>
<tr>
<td>pmp</td>
<td>Public expenditure price deflator</td>
<td>r,i,aa,t</td>
</tr>
<tr>
<td>pcons</td>
<td>Consumer price deflator</td>
<td>r,h,t</td>
</tr>
<tr>
<td>pi</td>
<td>Investment expenditure price deflator</td>
<td>r,t</td>
</tr>
<tr>
<td>pg</td>
<td>Public expenditure price deflator</td>
<td>r,t</td>
</tr>
<tr>
<td>pfact</td>
<td>Public expenditure price deflator</td>
<td>r,t</td>
</tr>
<tr>
<td>pprod</td>
<td>World factor price index</td>
<td>r,t</td>
</tr>
<tr>
<td>pwfact</td>
<td>World factor price index</td>
<td>t</td>
</tr>
<tr>
<td>ptmg</td>
<td>Global price index of transport services by mode</td>
<td>m,t</td>
</tr>
</tbody>
</table>
Flexible nesting

Add technology nest to model, give it a name
The mother of the nest is the top VA nest

```
tNest("Labor") = YES;
tNest_n_a("VA","Labor",a) = YES;
tNest_f_a("Labor","skLab",a) = YES;
tNest_f_a("Labor","unSkLab",a) = YES;
sigmaNest(r,"Labor",a) = 0.5;
```

Link the factors into the bundle

Define the substitution elasticity

Note: The code will automatically remove the factors linked into nests from the top VA nest

The second example shows how to introduce a CES-composite of intermediates linked into the top ND-nest, as e.g. applied in “GTAP-E” module.

2. ” to allow for high substitution of feed intermediates in animal production:

Add technology nest to model, give it a name

```
tNest("primEne") = YES;
Set primEne(i)
```

Define a helper set for the intermediates
(not used elsewhere)

```
coa-c
oil-c
gas-c
```

The mother of the nest is the top ND-bundle

```
alias(primEne,primEne);
```

Link the intermediates into the bundle

Define the substitution elasticity

Note: The code will automatically remove intermediates linked into nests from the top ND bundle

3. The third example shows how to combine intermediates and factors into a CES composite, which in the example is a sub-nest of the top VA nest:

```
tNest_n_a("ND","primEne",a) $ sum((r,primEne,t),io(r,primEne,a,t)) = YES;
tNest_i_a("primEne","primEne",a) $ sum((r,primEne,t),io(r,primEne,a,t)) = YES;
sigmaNest(r,primEne,a) $ sum((primEne,t),io(r,primEne,a,t)) = 0.5;
```
4. The last example reproduces the nesting of the GTAP-E model (the composite of skilled and unskilled labor is already shown above):

```gams
* --- top level nest, aggregate of capital and energy
* 
    tNest("CAP+ENE") = YES;
    tNest_n_a("VA","CAP+ENE",a)   = YES;
    tNest_f_a("CAP+ENE","capital",a) = YES;
    tNest_n_a("CAP+ENE","energy",a) = YES;
    sigmaNest(r,"CAP+ENE",a) = 0.25;

    tNest("energy") = YES;
    tNest_i_a("energy","ele-c",a)   = YES;
    tNest_n_a("energy","non-electric",a) = YES;
    sigmaNest(r,"energy",a) = 1.00;

    tNest("non-electric") = YES;
    tNest_i_a("non-electric","coa-c",a)   = YES;
    tNest_n_a("non-electric","non-coal",a) = YES;
    sigmaNest(r,"non-electric",a) = 0.50;

    tNest("non-coal") = YES;
    tNest_i_a("non-coal","gas-c",a)   = YES;
    tNest_i_a("non-coal","oil-c",a) = YES;
    tNest_i_a("non-coal","p-c-c",a) = YES;
    sigmaNest(r,"non-coal",a) = 1.00;
```

The actual code in use for the GTAP-E is more complex as it reflects a potential aggregation of the detailed products, with statements such as:

```gams
set nonCoal0 / gas,oil,p.c/;
set nonCoal(i); nonCoal(i) $ sum(napi(nonCoal0,i),1) = yes;
```

Depending on the resulting sets, sub-nests might be skipped if they collapse into one commodity.

The nesting used in a specific model run along with the substitution elasticities are reported in a table in the exploitation tools. Equally, the code reports the quantity and price aggregators for nests and the resulting values and aggregates them up over individual sectors and over regions.
Flexible nesting

It is important to note that the post-model reporting redefines the top-level VA and ND nests such that they match the usual definition, i.e. an aggregation over primary factors and intermediates, respectively. Information about these nests in the definition used in the model can be retrieved with the separate tables showing all technology nests.

A similar generic approach is implemented for factor supply: nested CET functions can be used to supply primary factors to the production sectors. The top level nest is labeled with “xft”. The following example used in the GTAP-AGR implementation shows that approach:

* --- build nesting structure for factor supply to agr / non-agr *

```
Fnest("agr") = YES;
Fnest_a("agr",agr,fn) = YES;
Fnest_n("xft","agr",fn) = YES;
omegafnest(r,"agr",fn) = omegaf(r,fn);

Fnest("nonagr") = YES;
Fnest_a("nonagr",nonagr,fn) = YES;
Fnest_n("xft","nonagr",fn) = YES;
omegafnest(r,"nonagr",fn) = omegaf(r,fn);
```

Again, the definition of what activities are agricultural ones is endogenously determined based on the mapping from the GTAP9 sectors to the sectors used in the benchmark SAM:

```
set agr0(i0) / pdr  "Paddy rice"
                 wht  "Wheat"
                 gro  "Cereal grains nec"
                 v_f  "Vegetables, Fruit, nuts"
                 osd  "Oil seeds"
                 c_b  "Sugar cane, sugar beet"
                 pfb  "Plant-based fibers"
                 corr  "Crops nec"
                 ctt  "Cattle, Sheep, goats, horses"
                 nap  "Animal products nec"
                 rmk  "Raw milk"
                 wol  "Wool, silk-worm cocoons"

;

set agr(a); agr(a) $ sum(mapa(agr0,a),1) = YES;

set nonagr(a); nonagr(a) $ (not agr(a)) - YES;
```

Similar to the CES production nests, the post-model processing reports the structure, parameterization and simulation results in the exploitation tools.

Finally, these flexible nestings are also applicable for final demand (government, investments and households), as shown here again with the nesting used by GTAP-E:
The code allows for factors or intermediate inputs to be linked to several nests. That is currently only used for the GTAP-Melitz extension to distinguish variable and fixed costs, but no parameters are introduced to allow a more general application.

As mentioned, the flexible nesting requires additional equations in the model. We discuss these here briefly for the production function, the approach for factor supply and final demand is similar. The input composite for a nest consists potentially of factors, intermediate inputs and other nests. The resulting price index for a nest $ptNest$ is defined as usually in the dual formulation:

\[
ptNest(r, tNest, a, i(t)) = \frac{\sum \text{input composite for nest } \text{consists potentially of factors, intermediate inputs and other nests}}{\text{The resulting price index for a nest } ptNest \text{ is defined as usually in the dual formulation:}}}
\]

The first summation aggregates the intermediate inputs assigned to the nest, based on the nest-specific input coefficient $ioNest$, Hicks non-neutral productivity shifters λ_{io} and the sectoral specific tax inclusive price for the intermediate via the macro m_{pa}. In a similar fashion, the second summation blocks aggregate factor use, while the last block considers sub-nests linked into the current nests. That implies that a multi-level nested structure does not require additional equations in the model.

The Armington intermediate demand xa for commodity i by sector a is shown below. It is driven by the relation between the Armington price m_{pa} relative to the intermediate composite price p_{nd}, reflecting its benchmark cost share on the intermediate composite io and the current total intermediate composite demand nd, plus potential demand from nests, consider total demand for the nest $xtNest$, the benchmark cost shares $ioNest$ and the price for the nest defined above:
The demand is additive, as one commodity i can be demanded by different nests. A similar equation drives the demand for individual factors and the demand for nests:

Note that it would be possible to completely remove the ND and VA nest definitions from the equation structure and only rely on the nesting structure. In order to increase readability, especially in case the standard GTAP configuration is used, the separate equations are kept.

3. Modules

The following chapters describe the different modules which are currently integrated into CGEBox. In most cases, the code of a module consists of three blocks of code:

1. Code declaring and defining additional data and parameters needed for the module
2. Code declaring and defining the necessary equations
3. Code used for post-model processing of the results

A Module introduces additional or alternative equations into the overall model.

3.1 myGTAP module

3.1.1 Summary

The myGTAP module allows representing factor earnings, income taxes paid, consumption and saving decisions and additional variables such as inter-household transfers for one or multiple private households in the model, replacing the regional household approach of the GTAP standard model. The user supplies the necessary data such the list of households and their specific factor stock shares via an
additional file in a specific format as detailed below, they are not part of the standard GTAP data base. The GUI allows selecting such a file along with closures rules related to different variables found in the module.

3.1.2 Motivation

Most CGEs application at single country level will make use of a household survey to provide distributional impact analyses beyond economic totals. The regional household approach of the standard GTAP model is not suitable for that type of analysis as it allocates the sum of factor and tax income based on modified CD function. That decouples earned and spent of the accounts for the individual agents by introducing a central utility maximizer which decides about how much income is available to these agents. Accordingly, the myGTAP extension (Minor and Walmsley 2013) replaces the regional household of the standard GTAP model by separated accounts. We provide in here a module which features of myGTAP to ease the integration of key data from household surveys in the CGEBox framework. The module also covers features such as remittance, foreign aid and transfers.

As general with the CGEBox framework, the myGTAP extension can in a modular fashion combined with the different other extensions of CGEBox such as flexible nestings or the Melitz model implementation. Furthermore, the framework can be applied as a single country model or a global one, in comparative –static or recursive-dynamic fashion. One key aspect of the myGTAP implementation is the possibility to provide detailed household data for one or some countries only while using an aggregate private household for the remaining ones, an approach also chosen for the GEMPACK implementation.

3.1.3 Implementation

Model equations

The implementation proposed in here is rather basic. The government account as well the potentially multiple private household use each a CD function to decide about consumption and savings share in their income. Alternatively, utility can be fixed and saving rates adjusted – a closure often found for the government account. The income for the government account encompasses all tax income, inclusive direct taxes, plus foreign aid exchanges minus transfers to households. The income of the different private households is defined as factor income minus direct taxes, remittances and foreign capital income exchanges, net transfers between households and from government. All international transfers are in international currency.

In the myGTAP module, each private household h supplies its own factor stocks $xfth$ to generate factor income $factyH$ net of depreciation. Total household income $hinc$, see equation (1), may include beside the factor income additionally transfers from government $transg$, remittances $remih$, foreign add to households $fyiH$, from other households $transh$ in the same region, and considers paying direct taxes $dirTax$, remittances $remoH$, foreign aid $fyoH$ and transfers to other households $trnh$:
The elements \(\text{trng} \), \(\text{trnh} \), \(\text{remih} \), \(\text{remoh} \), \(\text{fyoH} \), \(\text{fyiH} \) require additional data not available in the GTAP SAM. They are therefore set to zero if not explicitly introduced by the user. However, entries for \(\text{trng} \) might be generated during benchmarking if data processing leads to negative household incomes or other undesired outcomes. Otherwise, they also default to zero.

In order to ensure homogeneity, some of these flows are multiplied with price indices: \(p_g \) for transfers from government and \(p_{cons} \) for household transfers. To consider the case of endogenous exchange rates \(lcu \), all exchanges with the rest-of-the-world are converted into the international currency.

![Figure 4: Overview on distribution of supply and sourcing of demand](image_url)

The myGTAP module also allows to link households to subsistence production in a sub-region as depicted in the graphic about. In that case, besides the direct allocation of household resources to production activities in the same region, it can allocate resources to a national pool from which they are distributed to the activities in the different regions. Specifically, the factor stock \(x_{fH} \) of a household \(h \) in sub-region \(subr \) is distributed based on a CET function to production activities in the same region (first line in equation (2), the relation is depicted by the left and right block in Figure 4) and to a national pool (second line in equation (2) and middle part of in Figure 6). That leads to the following composite price index \(p_{ftH} \) for the average returns to a factor \(f \) supplied by household \(h \):

\[
\begin{align*}
\text{Figure 4: Overview on distribution of supply and sourcing of demand}
\end{align*}
\]
Where gfh are the CET distribution parameters, pf are factor prices received for factor f employed in activity a, and $pftNatPool$ is the price of the national factor pool. The cross-set $r \rightarrow r$ depicts the relation between region r and the nation $rNat$ it belongs to. If no sub-regions are present, it comprises a diagonal relation between the nation themselves.

Note: The "$ \not= \omega_{fH}$" condition is used in conjunction with GTAP-AEZ. In that case, the average price of land in that region pf is paid to the households and fixed shares are used.

The factor demand of the activities xf is hence sourced by households in the same region r and a national pool of nation $rNat$:

$$\text{The first expression in (3) above distributes a share of the per-capita factor stock x_{fH} of the different households h in the same region to the activity a, depending on the relation between factor returns of that activity pf and the average returns at household level p_{fH}, as defined above in equation (2). The second expression distributes a share of the per-capita factor stock to the endogenous national pool $x_{fNatPool}$, using the relation to the average pool price $p_{fNatPool}$.}

As households supply a part of their factor stocks to a national pool (think about capital or migrant labor), the national pool $x_{fNatPool}$ is sourced by all households in that nation. That is captured by summing over both $r \rightarrow r(r,rNat)$ to cover all regions r belonging to the nation $rNat$ and over households h in equation (4) below. The share of the factor stocks supplied to the national factor pool depends on the relation between the pool price $p_{fNatPool}$ and the average returns received by each household p_{fH}:

$$\text{The average pool price $p_{fNatPool}$ is defined from the factor returns pf of the activities and the share parameters $gfNatPool$:}$$
Note the different share parameters used: gfh refers to the shares supplied by households, $gfnatpool$ to shares on the national pool.

The factor income reflects stocks xft and related return pft, and substract household specific shares $shrDep$ on depreciation:

\[
\begin{align*}
\text{Income distribution is based on household specific saving shares } & \text{ betasH which are defined as variables to allow for closure swaps:} \\
\text{And:} \\
\text{The link to the remaining equations of the standard GTAP model is provided firstly by defining average direct tax rates:}\end{align*}
\]

These enter the usual tax income equations which hence need not to reflect the different households and related factor ownership shares. Secondly, adding up from savings of the households and governments defines the regional savings used in the standard GTAP model:

Equally, total factor income is defined:
Remittance outflows from the households are defined as share of labour income, the shares are calculated from GTAP-MIG data base if that is available:

\[
\text{remoh}_{s}(r,h,t,t) = \frac{\text{hFlag}(r,h,t)}{(\text{remoh}_s(r,h,t,t) \text{ or } \text{remoh}_s(r,h,t,t) \text{ ne } 0)}
\]

Remittance inflows use the same data base to define a bi-lateral link:

Similarly, foreign capital income transfers are defined as share of capital income and a share of total global flows:

And

Again, in case that these flows are fixed, shares adjust and a correction factor is introduced to main the global balance:

Foreign aid paid by the government is defined as a share of factor income:

Inflowing aid is defined as a share of global outflows:
In case that income aid is fixed, shares are endogenous and a correction factor ensures global balancing:

\[
\text{sum}(r; Nat, aido(r; Nat, t))/\text{sum}(r; Nat, regy.scale(r; Nat, t)) = \frac{\text{aidi}(r, t) + \text{aidiShrCor}(r, t) + \text{finc}(r; Nat, t)}{\text{aido}(r; Nat, t) + \text{lou}(r; Nat, t)}
\]

That leads to the following balance equation for government income:

\[
\text{ygeq}(r; Nat, t) = \text{yg.range}(r; Nat, t) + \text{yd}(r; Nat, t) + \text{ydns}(r; Nat, t) + \text{ydns}/\text{regy.scale}(r; Nat, t)
\]

As both the government and the private households have their own saving variables, we have to add up to link up to the equation structure of GTAP standard to arrive a physical savings \(xsavG\) at national level:

\[
\text{rsav}(r; Nat, t) + \text{psave}(r; Nat, t) = \frac{\text{rsavO}(r; Nat, t)}{\text{yg.scale}(r; Nat, t)}
\]

The value of regional savings \(rsav\) is defined as:

\[
\text{rsav}(r; Nat, t) = \text{sum}(r; Nat, rsav(r; Nat, t))
\]

Equally, we need to introduce the net income transfer with the rest-of-the-world \(\text{finc}\) which enters the regional income equation, defined as:

\[
\text{finc}(r; Nat, t) = \text{aido}(r; Nat, t) + \text{yd}(r; Nat, t) + \text{ydns}(r; Nat, t) + \text{ydns}/\text{lou}(r; Nat, t)
\]

Again, shares are defined as variables to allow for closure swaps. All other equations are untouched.

3.1.1 Methodology: Household demand

In opposite to GTAP standard, the module considers potentially three different origins in the top Armington nest: (1) regional demand, (2) national pool demand and (3) import demand. For all Armington agents which are not private households, the national pool demand layer is not present and defaults to what it called “regional” demand in the model, i.e. domestic demand. That is somewhat confusing (\(xd\) and \(pd\) might refer to the nation or the sub-region) but keeps the changes in the code structure minimal.
Figure 5: Structure of demand system considering subsistence production

The macro `m_padef` defining the Armington composite prices shown in equation (24) below hence comprises potentially three share parameters `alphan` (= national pool), `domestic` (= region for private household, domestic for all other agents) and imports `alpham`. The macro `p_pdp` defines tax inclusive prices faced by the agents for the regional and the national origin. In case of the national pool, national prices are introduced as captured by the cross-set `r_r`. The domestic (or regional) demand uses the price of that region directly. The macro `p_pmp` define the import price plus agent specific taxes.

\[
\text{(24)}
\]

The version of the macro shown above is only used if the global `hSubr` (= Household at sub-regional level) is set to “on” by a switch on the interface. Otherwise, the simpler default version in equation (25) is used which only considers the domestic and imported origin:

\[
\text{(25)}
\]

The demand equations are standard ones for a CES demand system, the national pool demand `xn` is defined as shown in equation (26) below. The left hand `xn` depends on the total Armington demand defined in the macro `mm_xa`, pre-multiplied with the share parameter for the national pool `alphan`. The resulting quantity is updated with the price relation between the Armington price `m_pa` and the national price faced by agent, considering the substitution elasticity between the imported and domestic origin `sigmam` as supply by the GTAP data base:

\[
\text{(26)}
\]

Note again the use of the `r_r` cross-set which puts the national price into the price relation.

The equation for the regional (respectively domestic) demand `xd` in equation (27) is unchanged from the existing CGEBox code, it comprises the same structural elements as above:
The total import demand equation \(\text{xmteq} \) (28) now comprises an additional line which adds the import demand of sub-national households to the import demand of agents defined at national level (first line, the default from the GTAP Standard):

\[
x_{\text{d}}(t) = \text{m}_n(x_a) \frac{m_n(x_a)}{m_n(x_a) + m_p(x_a)} \frac{m_p(x_a) + m_p(x_a) + m_p(x_a)}{m_n(x_a) + m_p(x_a) + m_p(x_a)} x_{\text{d}}(t)
\]

The equilibrium for the national market depicted in the equation \(\text{dpeq} \) (29) is equally expanded by a second expression which considers demand of the private households from the national pool. The preprocessor \$\text{ifthen-endif} commands allow to only introduce the expression if the sub-national household layer is active:

\[
\text{psSubreg}(30) \quad \text{which defines the share of domestic supply} \ x_s \ \text{for dis-aggregated nations} \ d_{si, r} \ \text{demanded from their sub-regions} \ s_{br} \ \text{now considers the possibility that part of the demand stems directly from households in the same regions. That demand is subtracted in the first line from regional supply:}
\]

\[
\text{pssubreq}(30) \quad \text{which defines the share of domestic supply} \ x_s \ \text{for dis-aggregated nations} \ d_{si, r} \ \text{demanded from their sub-regions} \ s_{br} \ \text{now considers the possibility that part of the demand stems directly from households in the same regions. That demand is subtracted in the first line from regional supply:}
\]

Thus, the output quantity of the sub-region \(x_s \) is reduced by the demand of households. Only the remaining part feeds into the national output quantity \(x_s \) of the dis-aggregated nation \(d_{si, r} \).

Closures

The code currently supports two types of closures: either the driving equations which use a fixed share on a specific total as depicted above or fixing the transactions and rendering the shares endogenous:
The closures can be defined via the GUI as discussed below. As seen, that solution works currently globally. It is possible to fix also transactions for single countries and render shares endogenous, however, in that case, only the CNS and not the MCP solution algorithm can be used.

Integrating data from household surveys

The module requires only very basic information assumed to be available from any household survey, namely factor income and population shares. Data on differences in direct tax rates or shares on total private savings can be provided additionally; otherwise identical savings and direct tax rates for all households as derived from the GTAP SAMs are used. International transfers, between households and from government to household are left out from the model if no data are entered.

Data are inputted as follows:

1. Factor income, savings and population are inputted as shares of each private household type on economic totals
2. Direct tax rates are relative changes against those of the aggregate average household
3. Transfers (foreign, between households, from government) are relative to factor income minus direct taxes
4. Foreign aid (in/out) is defined relative to total factor income
The shares on factor income, savings and population are scaled to unity. That allows to either introducing them as shares (as shown below) or as totals. The scaling will in both cases take care of potential rounding or other editing errors. Note that for the other entries, absolute numbers must be translated to the respective shares. That can be done by data transformations in the very same file using the SAM entries already available at the point in the code where the data information is included in the general calibration routine “cal.gms”.

The number of household types is comprised in the same file. Note the necessary “iftheni” clause which ensures that the information is made available to the code when the general set definitions are set-up in “build\loadGTAPagg.gms”:

```
$iftheni %i==decl
  set_hhsids(*) / poor,rich/;
$else
```

The code is set-up such that the household split up is introduced for one, some or all regions, solely driven by the data provided. Currently, the parameters of the CDE demand system are identical. The code allows for two options with regard to final demand by the disaggregated households:

1. The consumption shares between all households are identical.
2. The expansion parameters of the CDE system are used to update the consumption shares, and afterwards, the Armington demands for the different households are adjusted to simultaneously exhaust the given SAM entries and the final consumption total of the disaggregated households.
The user could provide household specific substitution elasticities between domestic and imports based on an extended parameter file, an option generally available for CGEBox.

An alternative is to assign factor income based on activities:

```plaintext
* assign income from agricultural activities to agricultural household
  shrHhSlds(r, agr, agr, t) = 1;
```

Which can be combined with other shares. If data for activities are given, these have priorities.

SAM rebalancing

The integration of new transactions between countries requires that global flows add up to zero. That condition is achieved by applying a uniform relative correction factors to the flows which distributes any original imbalances, here shown for the case of remittance flows:

```plaintext
* balance global flow of remittances
  parameter p_surplus(n, ren, t);  # ren = remittance
  p_surplus(0, ren, t) = sum((r, h), (h, h), 0), p_surplus[0, ren, t] = \sum_{h} p_{surplus}(0, h, h, r)*w_{t};
  p_surplus(n, ren, t) = \sum_{h} p_{surplus}(n, h, h, r)*w_{t};
  p_{surplus}(0, ren, t) = \sum_{h} p_{surplus}(0, h, h, r)*w_{t};
  p_{surplus}(n, ren, t) = \sum_{h} p_{surplus}(n, h, h, r)*w_{t};
```

The first line calculates the imbalance in the original data (“rem”), the second the weights (“wgt”) to derive a uniform correction factor. The two remaining statements correct all remittance flows such that a zero global balance is resulting. The same logic is applied to balance foreign capital income inflows and outflows and foreign aid flows to governments, and also transfers between households inside of one country.

The introduction of new global transfer exchanges will generally imply that BOP and BOT are no longer in balance as it is the case in the original SAMs. In order to close the balance again, we first define the new additional net inflows:

```plaintext
* foreign contribution to income (can be negative)
  finc.l(r, t) = \text{aid} \cdot I(r, t) + \text{sum}(\text{rem}, \text{h喜悦}(r, h), t)) + \text{sum}(h, fghh.l(r, h), t))
                 - \text{aid} \cdot I(r, t) - \text{sum}(h, \text{rem}, \text{h喜悦}(r, h), t)) - \text{sum}(h, fghh.l(r, h), t));
```

In order to maintain that BOT=BOP, foreign savings are downward corrected accordingly:

```plaintext
* correct foreign savings by contribution to income to maintain BOT
  sava.l(r, t) = sava.l(r, t) - finc.l(r, t);
```

Which in turn requires, according to I=S, that the regional saving are re-balanced as well, using the same absolute correction:

```plaintext
* and correct regional savings in opposite direction to main I=S
  rsva.l(r, t) = rsva.l(r, t) + finc.l(r, t);
```

That ensures that aggregate private consumption, government consumption and savings for each commodity need not to be rebalanced. The reader should note that the re-balancing approach was not checked for compliance with the myGTAP approach.
Estimating final demand shares

In case the CDE expansion parameters are used to define final demand, the following procedure is used. As a first step, the Armington demands are derived from the given per capita income differences:

\[
xa.l(r,i,hhslds,t) \times xa.l(r,i,\text{"hhsld"},t) = xa.l(r,i,\text{"hhsld"},t) \\
* yc.l(r,hhslds,t)/yc.l(r,\text{"hhsld"},t) \\
* [(yc(r,hhslds,t)/pop(r,hhslds,t))]/(yc(r,\text{"hhsld"},t)/pop(r,\text{"hhsld"},t))] **(eh(r,i,t));
\]

The first line reflects differences in total final household consumption which depends on the data on factor income and direct tax shares of each household. The second line reflects differences in per capita income and the expansion effect based on the \(eh\) parameter of the CDE demand system.

In order to render the updated Armington demands for the different households consistent both with the given total spent for private consumption \(yc\) for each household and with the aggregate SAM entries for private consumption for each commodity, the following two consistency equations are used:

\[
* \text{--- sum of Armington demands by households must exhaust SAM entry} \text{---}
\]

\[
e_{xaCons}(rs,i,t) \times xa.l(rs,i,\text{"hhsld"},t) \quad \text{(1)}
\]

\[
\text{sum}(hhslds, xa(rs,i,hhslds,t)) =E= xa.l(rs,i,\text{"hhsld"},t); \\
e_{ycCons}(rs,hhslds,t) \quad \text{(2)}
\]

\[
* \text{--- sum of Armington demands by households must exhaust given private consumption} \text{---}
\]

\[
\text{sum}(i, xa(rs,i,hhslds,t)) =E= yc.l(rs,hhslds,t);
\]

These are combined into a simple model which minimizes squared relative differences from the estimates resulting from applying the expansion elasticities:

\[
e_{hdpXA} \quad \text{(3)}
\]

\[
v_{hdp} \times \text{sum((rs,i,hhslds,t) \times xa.l(rs,i,hhslds,t),1)}
\]

\[
= \text{sum((rs,i,hhslds,t) \times xa.l(rs,i,hhslds,t),1)}
\]

\[
\text{sqr((xa(rs,i,hhslds,t)-xa.l(rs,i,hhslds,t))/xa.l(rs,i,hhslds,t)));}
\]

3.1.2 Graphical User Interface

Options

In order to use the extension, the “myGTAP” module must be switched on the interface:
In that case a tab becomes visible which allows detailing options for the myGTAP module as shown below. The closures have been discussed above.

The selection box of files under “myGTAP file” allows selecting a file with data on the household disaggregation and international transactions as discussed above. These files are stored in “gams\scen\myGTAP”, currently three test files are provided in the repository:

- myGTAP_oneHHSLD.gms
- myGTAPTest.gms
- regHousehold.gms

The “myGTAPTest.gms” comprises the code shown above with the data for several households and can be used as an example to introduce own data.

The “regHousehold.gms” file removes only the regional household from the GTAP Model and introduces separate accounts for the agents without any household differentiation:

```gams
$ifthen1 $1==decl
  $ifempty
  set set_hhsls(*) //;
  $ifnotempty
$$endif
```

The “myGTAP_oneHHSLD.gms” shows how the extension can be used to introduce international transactions without dis-aggregating to different household types, i.e. all shares and relations for that single aggregate private household are set to unity, but remittance, foreign capital income and foreign information is provided:
Exploitation of myGTAP results

The post-processing code aggregates the information from single household to a regional private household and allows analyzing results at the level of the dis-aggregated household types:

On top, tables with demand and factor income information at that level are provided:
Node graphs (in value, in value normalized with price index, and per capita) depict graphical income generation and use for each household type, including transfer transactions:
3.1.3 Code implementation

Data entry and calibration

The information on the list of dis-aggregated household types is provided by the include file chosen on the user interface. It defines the household types which technically co-exist with the aggregate private household found in the standard option termed “hhsld”:

```
set h(f) Households /
  hhslde "Aggregate Household"
  /;
```

That aggregate “hhsld” is only used when the data are loaded, in the calibration code “cal.gms” and are again introduced post-model for reporting. The household split-up is introduced in “cal.gms”. In case that only the regional household mechanism is replaced, but one aggregate private household agent is used, the split-up parameters are simply set to all zeros:

```
$$ifthen not defined ShrHhslds
* * --- no data on share of households, assume
* *   top level regional household, i.e. one aggregate household own all factors
* parameter shrHhslds(r,hhslds,*,t);
  option kill=shrHhslds;
  option kill=shrXF;
  set dummyHhslds/dirTAX,Savings/;
$$else
  shrXF(r,hhslds,f,t) = shrHhslds(r,hhslds,f,t);
$$endif
```

In that case or if for some country, no distributional data is provided., the ownership share to factors are all unity:

```
* * --- if factor shares are missing for all households, use the standard aggregate
* * (allows to use dis-aggregated data for one country in full global model)
* loop(r $ (not sum((hhslds,f,t), shrXF(r,hhslds,f,t))),
  shrXF(r,"hhsld",f,t) = 1;
);
```

Next, the code checks if the factor share information is consistent, i.e. if for one region, information for each household type and factor is edited:

```
loop( (r,f) $ (card(hhslds) $ (not sum((hhslds,t), shrXF(r,hhslds,f,t)))),
  shrXF(r,hhslds,f,t) = eps;
  abort "Factor shares for some households reported, but for other missings ",shrXF;
);
```

If the user wants to introduce zero shares, it should edit an “eps” value in the table shown above. The code will automatically scale the data to unity which allows to provide absolute data in the table instead of shares:
Next, differences in direct tax rates are introduced. A similar test as above is implemented. If no information is given, uniform rate are used:

```
* --- shift direct taxes by given difference in direct taxation
*  loop( s $ { sum( (hhholds,t), shrRhslds(r,hhholds,"dirTax",t) ) }$ (sum( (hhholds,t) $ shrRhslds(r,hhholds,"dirTax",t),l) ne cart(t)+card(hhholds)) ),
    shrRhslds(r,hhholds,"dirTax",t) $ (not shrRhslds(r,hhholds,"dirTax",t)) = eps;
    shrRhslds(r,hhholds,"dirTax",t) = kappaf(t,r,f,hh);  
  kappaf(t,r,f,hh) = kappaf(t,r,f,hh) + (not shrRhslds(r,hhholds,"dirTax",t)) = eps;
```

From that information, household specific factor income and direct taxes are derived:

```
* -- factor income for each household, based on share on factor ownership
*  factY(r,h) = sump( (f,c) * sftF(r,f) * shrXF(r,h,f,t) )
  factY(r,f,h) = sump( (f,c) * sftF(r,f) * shrXF(r,h,f,t) )
  factY(r,f,h) = sump( (f,c) * sftF(r,f) * shrXF(r,h,f,t) )
  factY(r,f,h) = sump( (f,c) * sftF(r,f) * shrXF(r,h,f,t) )
  factY(r,f,h) = sump( (f,c) * sftF(r,f) * shrXF(r,h,f,t) )
```

Which allows defining direct tax rates which recovers economic wide totals. Next direct taxes piad by the household types are updated:

```
* direct taxes by household
*  dirTax(r,h) = sump( (sames (f,m),f) * sftF(r,f) * shrXF(r,h,f,t) )
  dirTax(r,h) = sump( (sames (f,m),f) * sftF(r,f) * shrXF(r,h,f,t) )
  dirTax(r,h) = sump( (sames (f,m),f) * sftF(r,f) * shrXF(r,h,f,t) )
  dirTax(r,h) = sump( (sames (f,m),f) * sftF(r,f) * shrXF(r,h,f,t) )
  dirTax(r,h) = sump( (sames (f,m),f) * sftF(r,f) * shrXF(r,h,f,t) )
```

A similar approach is used for saving rates, i.e. if no information is given, the same shares as for the aggregate private household are used:

```
* -- determine savings
*  loop( s $ { sum( (hhholds,t), shrRhslds(r,hhholds,"savings",t) ) }$ (sum( (hhholds,t) $ shrRhslds(r,hhholds,"savings",t),l) ne cart(t)+card(hhholds)) ),
    shrRhslds(r,hhholds,"savings",t) $ (not shrRhslds(r,hhholds,"savings",t)) = eps;
    shrRhslds(r,hhholds,"savings",t) = shrRhslds(r,hhholds,"savings",t)+(not shrRhslds(r,hhholds,"savings",t)) = eps;
    shrRhslds(r,hhholds,"savings",t) = shrRhslds(r,hhholds,"savings",t)+(not shrRhslds(r,hhholds,"savings",t)) = eps;
```

In order to distribute regional savings to the different accounts, first the government savings are calculated residually:

```
* -- scale savings shares to unity
*  shrRhslds(r,hhholds,"savings",t) = shrRhslds(r,hhholds,"savings",t)/sum(hhholds,shrRhslds(r,hhholds,"savings",t));
```
In absence, of any information of foreign contributions to the regional government, it is assumed that
the government saving comes from regional savings:

```
rsavc.l(r,"hhsld",t) = rsav(r,t) - rsavgy(r,t);
```

These savings are distributed to the household types either by the information provided or using
uniform rates:

```
rsavc.l(r,hhsld,t) $ shrhhsld(r,hhsld,"savings",t) = rsavc.l(r,"hhsld",t) * shrhhsld(r,hhsld,"savings",t);
```

From there, saving rates per household type are calculated, and the private consumption spending is
calculated as well as the related value share:

```
betash.l(r,h,t) $ factYh(r,h,t) = rsavc(r,h,t)/(factY(r,h,t) - sum(f,dirtax(r,f,hhsld,t)));
```

The household type use the same consumption tax rates and split-up of domestic and import demand.
Note that the information is only introduced if different household types are introduced:

```
loop(r $ sum("hhslds",t), yc.l(r,hhsld,t)),
```

In that case, information on the aggregate household will be deleted:
Post processing code

The post processing code basically reverts the code from the calibration, i.e. it aggregates from the individual household types to the aggregate private household “hhsld”:

```gams
if { sum( {rs, hhslds}, poons.l{rs, hhslds, t, s} ) },
    pDnest.l{rs, "top", h, t, s} = poons.l{rs, h, t, s};
    xnest.l{rs, "top", h, t, s} = ypoons.l{rs, h, t, s}/poons.l{rs, h, t, s};
    yc.l{rs, "hhsld", t} = sum( hhslds, poons.l{rs, hhslds, t} ) / yc.l{rs, t};
    xche.l{rs, 1, "hhsld", t} = sum( hhslds, xflag.l{rs, 1, hhslds, t} ) / xche.l{rs, 1, t};
    xa.l{rs, 1, "hhsld", t} = sum( hhslds, xflag.l{rs, 1, hhslds, t} ) / xa.l{rs, 1, t};
    xT.l{rs, 1, "hhsld", t} = sum( hhslds, xflag.l{rs, 1, hhslds, t} ) / xT.l{rs, 1, t};
    factTh.l{rs, 1, "hhsld", t} = sum( hhslds, factTh.l{rs, hhslds, t} ) / factTh.l{rs, 1, t};
    pflag.l{rs, 1, "hhsld", t} = xflag.l{rs, 1, "hhsld", t} / pflag.l{rs, 1, t};
    pDp.l{rs, 1, "hhsld", t} = xDp.l{rs, 1, "hhsld", t} / pDp.l{rs, 1, t};
    pPp.l{rs, 1, "hhsld", t} = xPp.l{rs, 1, "hhsld", t} / pPp.l{rs, 1, t};
    ucl.l{rs, "hhsld", t} = sum( hhslds, ycl.l{rs, hhslds, t} ) / ucl.l{rs, t};
    xche.l{rs, 1, "hhsld", t} = xche.l{rs, 1, t} / xche.l{rs, 1, "hhsld", t};
    xflag.l{rs, 1, "hhsld", t} = xflag.l{rs, 1, t} / xflag.l{rs, 1, "hhsld", t};
    ycl.l{rs, 1, "hhsld", t} = yc.l{rs, t} / ycl.l{rs, 1, t};
    beta.s{rs, t} = yc.l{rs, 1, t} / ycl.l{rs, 1, t};
};
```

3.1.4 Integration FAO household data into CGEBOX

Wolfgang Britz, October 2019

Motivation

The following document provides documentation on the integration of FAO household survey data into CGEBox. The use of the data is twofold: first, to define flexibly aggregate household types for use with the myGTAP module and, second, to develop a post-model micro-simulation tool based on the data set. Both are fully operational and encompass the two usual ways household survey data sets are used in CGE work.

Post-model simulation does not require a household differentiation in the CGE itself. Thus, it has the advantage of keeping the structure of the CGE separated from the specifics of the household data set. Indeed, the micro-simulation itself can be conducted completely independent from the software code of the CGE. That argument is not of relevance here as we integrate the post-model micro-simulation transparently into the code of CGEBox itself. Introducing (aggregate) household in the model structure which manage their own factor stocks to maximize revenues can add depth to the analysis which might be missed in post-model simulation. Equally, household demand behaviour might be more
appropriate depicted if aggregate household are introduced in the CGE itself. *CGEBox* allows now both, also in combination.

Description of the data set

The FAO household data set\(^4\) covers 19 countries (Kenya, Ethiopia, Malawi, Tanzania, Niger, Uganda, Nigeria, Ghana, Bangladesh, Vietnam, Nepal, Cambodia, Indonesia, Nicaragua, Guatemala, Bolivia, Panama, Albania, Tajikistan), in many cases, also the region inside the country in which the household is located is available. In total, the data set covers more than 193tsd households. The data had been collected between 1992 and 2013 (see Table 4). While there are in total more than 500 items, many of the items are only comprised in a specific sample such as e.g. household possession of certain equipment. The common set covers 115 variables, mostly related to income composition and some classification variables (rural / urban, male or female head, household size etc.).

Table 4: Data coverage

<table>
<thead>
<tr>
<th>Country</th>
<th>years</th>
<th># of households</th>
<th># of regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td>2005</td>
<td>12547</td>
<td>8</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2012</td>
<td>3789</td>
<td>10</td>
</tr>
<tr>
<td>Malawi</td>
<td>2004, 2011</td>
<td>23431</td>
<td>3</td>
</tr>
<tr>
<td>Tanzania</td>
<td>2009, 2011, 2013</td>
<td>11923</td>
<td>26</td>
</tr>
<tr>
<td>Niger</td>
<td>2011</td>
<td>3910</td>
<td>8</td>
</tr>
<tr>
<td>Uganda</td>
<td>2005, 2012</td>
<td>8259</td>
<td>4</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2020, 2013</td>
<td>4936</td>
<td>6</td>
</tr>
<tr>
<td>Ghana</td>
<td>2005, 2013</td>
<td>24626</td>
<td>10</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>2005</td>
<td>10058</td>
<td>6</td>
</tr>
<tr>
<td>Nepal</td>
<td>2003</td>
<td>3908</td>
<td>5</td>
</tr>
<tr>
<td>Cambodia</td>
<td>2004</td>
<td>14978</td>
<td>5</td>
</tr>
<tr>
<td>Indonesia</td>
<td>2000</td>
<td>10063</td>
<td>19</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>1998, 2005</td>
<td>10900</td>
<td>4</td>
</tr>
<tr>
<td>Guatemala</td>
<td>2006</td>
<td>13640</td>
<td>8</td>
</tr>
<tr>
<td>Bolivia</td>
<td>2005</td>
<td>4021</td>
<td>9</td>
</tr>
<tr>
<td>Panama</td>
<td>2003</td>
<td>6314</td>
<td>6</td>
</tr>
<tr>
<td>Albania</td>
<td>2005</td>
<td>3818</td>
<td>4</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>2003, 2007</td>
<td>7697</td>
<td>5</td>
</tr>
</tbody>
</table>

Income generation

We focus here mostly on income generation – how the income of the household is composed – at it is one main links of household survey data to CGE results. As the data set is tailored to FAO needs and covers developing countries, it takes care to reflect the informal character of the agricultural sector in developing countries with subsistence features. This explains partly the top-level income categories found in the data set:

Table 5: Top level categories in income generation

<table>
<thead>
<tr>
<th>Category label</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selfemp</td>
<td>Income (partly imputed) from being self-employed outside the agriculture sector</td>
</tr>
<tr>
<td>Livstincome1gross</td>
<td>Income from livestock (mostly imputed, comprises the value of own-consumed crops)</td>
</tr>
<tr>
<td>Cropinomce1gross</td>
<td>Income from crops (mostly imputed, comprises the value of own-consumed crops)</td>
</tr>
<tr>
<td>Transfer gross</td>
<td>Income from private and government transfers</td>
</tr>
<tr>
<td>agr_wge</td>
<td>Wage income from agriculture</td>
</tr>
<tr>
<td>Nonagr_wge</td>
<td>Wage income non-agriculture</td>
</tr>
<tr>
<td>Other</td>
<td>Mainly farm and non-farm rents</td>
</tr>
</tbody>
</table>

Alternatively, these items are available expressed as shares on total income which might ease data processing. Checks have shown that the shares generally add up to unity while adding the absolute might show some imbalances. For the work with our CGE, using shares is hence the implemented approach.

Table 6 Top level share categories

<table>
<thead>
<tr>
<th>Category label</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh_agin</td>
<td>Income from agriculture (crops, livestock, farm rents)</td>
</tr>
<tr>
<td>shagwge</td>
<td>Wages from agriculture</td>
</tr>
<tr>
<td>shoffarm</td>
<td>Wages and self-employed non-agriculture</td>
</tr>
<tr>
<td>Shtrans</td>
<td>Income from private and government transfers</td>
</tr>
<tr>
<td>shother</td>
<td>Mainly non-farm rents</td>
</tr>
</tbody>
</table>

The shares of the top-level categories in Table 6 are broken down more detailed ones as shown in Table 7. The details allow linking the different wage and self-employed income categories of the households to some aggregate sectors in the economy, and in case of wages, also to two aggregate skill categories. That clearly adds depth to the link between the micro-data set and macro-simulation in the CGE.

Table 7: Second level categories shares

<table>
<thead>
<tr>
<th>Category label</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selfemp</td>
<td>Income (partly imputed) from being self employed</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Livstincome1gross</td>
<td>Income from livestock including wages</td>
</tr>
<tr>
<td>Cropinomce1gross</td>
<td>Income from crops including wages</td>
</tr>
<tr>
<td>Sh1privtransfer</td>
<td>Income from private transfers</td>
</tr>
<tr>
<td>Sh1pubtransfer</td>
<td>Income from public transfers</td>
</tr>
<tr>
<td>Sh1wge2_1..3</td>
<td>Wage income, different sectors (mining, manufacturing, electricity/utilities,</td>
</tr>
<tr>
<td>shwegel0_1..3</td>
<td>constructions, commerce, transport/storage/communication, finance/insurance/real estate, other services, other); _1: skilled, _2: unskilled, _3:other</td>
</tr>
<tr>
<td>Sh1selfemp</td>
<td>Non-ag self-employed income, sectoral break as above</td>
</tr>
</tbody>
</table>

Data processing

The data in STATA format were converted by Olexandr Nekhay into CSV format. In order to import the data into GAMS, the CSV2GDX conversion routine was used:

```bash
$call csv2gdx "fao_hhold.csv" useHeaders y id=p_dataFao index=2,4,7,6 values=8..lastCol acceptBadValues=Y
```

The outcome is a large GDX container with about 18 Mio non-zeros. It comprises a five-dimensional parameter with the household observations (country, region, household identifier, year, item). In order to speed up processing, first three cross sets were generated which show the relation between the country and the year, the country and the household id and the country and region for which data are available:

```plaintext
set country_hhid(country,hhid);
country_hhid(country,hhid) $ sum( (region,year), p_dataFao(country,region,hhid,year,"totIncome")) = YES;

set country_year(country,year);
country_year(country,year) $ sum( (region,hhid), p_dataFao(country,region,hhid,year,"totIncome")) = YES;

set country_region(country,region);
country_region(country,region) $ sum( (hhid,year), p_dataFao(country,region,hhid,year,"totIncome")) = YES;
```

Next, we compact the data by removing the year and region dimensions from the data set which are not needed for further applications and store the resulting parameter and the cross-sets to disk for later reuse:

```plaintext
p_compact(country_hhid(country,hhid),datVar) = sum( (country_region(country,region),country_year(country,year)), p_dataFao(country,region,hhid,year,datVar));
execute unload "compact.gdx" p_compact,country_hhid,country,hhid,region_year;
```

It should be noted that the household ids are unique for each country. The same id might however be found in several countries. Equally, one household might be found in multiple years.

Linking the data set to the GTAP data

The income categories reported in the FAO data set do not match directly the sector resolution of GTAP. Similarly, the income definition comprises elements such as private and government transfers.
for which no data are available in the standard GTAP data set. The following paragraph briefly
document how we derive form the income shares data to be used with the myGTAP module in
CGEBox.

In order to link wage income to the GTAP data, we link the shares of wages as reported in the FAO
household survey to GTAP labour skill categories and GTAP sectors:

```plaintext
set datvars_1_a(datVars,1,a) /
shlwge2_1_unskLab .(coa-a, oil-a, gas-a, omn-a)
shlwge2_2_skLab .(coa-a, oil-a, gas-a, omn-a)
shlwge2_3_unskLab .(coa-a, oil-a, gas-a, omn-a)
shlwge3_1_unskLab .set.manuf
shlwge3_2_skLab .set.manuf
shlwge3_3_unskLab .set.manuf
shlwge4_1_unskLab .set.eleDist
shlwge4_2_skLab .set.eleDist
shlwge4_3_unskLab .set.eleDist
shlwge5_1_unskLab .cns-a
shlwge5_2_skLab .cns-a
shlwge5_3_unskLab .cns-a
shlwge6_1_unskLab .trd-a
shlwge6_2_skLab .trd-a
shlwge6_3_unskLab .trd-a
shlwge7_1_unskLab .set.trsStoCom
shlwge7_2_skLab .set.trsStoCom
shlwge7_3_unskLab .set.trsStoCom
shlwge8_1_unskLab .set.FinInsReal
shlwge8_2_skLab .set.FinInsReal
shlwge8_3_unskLab .set.FinInsReal
shlwge9_1_unskLab .set.services
shlwge9_2_skLab .set.services
shlwge9_3_unskLab .set.services

/
```

The sets used such as "set.manuf" list simply the GTAP sectors. A similar cross sets is used to link
sector to self-employed earning shares:

```plaintext
set datvars_self(datVars,a) /
shlsel2f.(coa-a, oil-a, gas-a, omn-a)
shlsel3f.set.manuf
shlsel4f.set.eleDist
shlsel5f.cns-a
shlsel6f.trd-a
shlsel7f.set.trsStoCom
shlsel8f.set.FinInsReal
shlsel9f.set.services

/;
datVars_self("shlsel{10}".nonAgr) = YES;
```

These relations are needed both for the application of the myGTAP module and for the post-model
micro-simulation.

Defining aggregate household types for the myGTAP module of CGEBox

The definition of household types can be managed via the interface where up to three classification
criteria can be defined:
myGTAP module

The first field captures the name of the up to three items from the FAO household surveys of which the numerical values are used to assign households to classes. As shown in the second example, that can include flags such as rural/urban, male/female household head etc.

The second field defines if the limits entered should be interpreted directly (v=value) or defines quantiles (q). If quantiles are used, the household data are sorted (unweighted) by the item’s numerical values and percentiles of these values define country specific class limits. The third field defines the numerical limits for the classes. Here, the following points need to be noted:

1. Classes must be ordered from low to high. (Attention here for flags, an input such as “female 1, male 0” will not produce the correct classification).
2. The last text field defines the elements of a set. Hence, the inputs must be valid GAMS syntax for the text between “SET /” and the closing “;/”. That especially means that limits defined as floats with a decimal point must be surrounded by quotation marks as shown in the example for “sh_agin” (share of agricultural income). Otherwise, GAMS will assume that an element of a two-dimensional cross-set will be defined. Due to the interaction of the Java and GAMS code in the GUI, if quotation marks are used for one of the set elements, the whole text field must be surrounded by a second type of quotation marks as well.
3. If both a label and an explanatory text are given, the second element is interpreted as the numerical threshold. That is useful for cases which indicate flags as in the second field in the example above the label of the household will be comprise texts instead of “0” or “1”.
4. If a ‘.’ is found in a label, the limit is automatically derive from the number after the ‘.’, as shown in the “sh_Agin” example above.
5. If only numbers are given, the name of the item is used as a prefix to ease reading the household names.

The example above will define a set with 4x2x3=24 household types. In order to reduce manual coding efforts and allow for a GUI driven definition of such classifications, embedded Python code defines the necessary cross-sets and defines sets such as shown in the example below.

The Phyton code firstly constructs easier to read set-definitions from the user input, for the example above, they look like:

```gams
set incPerCap/
  "incPerCap 25"
  "incPerCap 50"
  "incPerCap 75"
  "incPerCap 100"
/;
set urban/
  "rural"
  "urban"
/;
set sh_Agin/
  "incPerCap 0-0.5"
  "incPerCap 0.5-0.75"
  "incPerCap 0.75-1.00"
/;
```

Secondly, it defines the names of the aggregate household types:
Third, it defines the cross-set which links the attribute values of each item to the household type:

```plaintext
SET set_hhlds /
    "incPerCap 25 rural sh_Agin 0-0.5"
    "incPerCap 25 rural sh_Agin 0.5-0.75"
    "incPerCap 25 urban sh_Agin 0-0.5"
    "incPerCap 25 urban sh_Agin 0.5-0.75"
    "incPerCap 25 urban sh_Agin 0.75-1.00"
    "incPerCap 50 rural sh_Agin 0-0.5"
    "incPerCap 50 rural sh_Agin 0.5-0.75"
    "incPerCap 50 rural sh_Agin 0.75-1.00"
    "incPerCap 50 urban sh_Agin 0-0.5"
    "incPerCap 50 urban sh_Agin 0.5-0.75"
    "incPerCap 50 urban sh_Agin 0.75-1.00"
    "incPerCap 75 rural sh_Agin 0-0.5"
    "incPerCap 75 rural sh_Agin 0.5-0.75"
    "incPerCap 75 rural sh_Agin 0.75-1.00"
    "incPerCap 75 urban sh_Agin 0-0.5"
    "incPerCap 75 urban sh_Agin 0.5-0.75"
    "incPerCap 75 urban sh_Agin 0.75-1.00"
    "incPerCap 100 rural sh_Agin 0-0.5"
    "incPerCap 100 rural sh_Agin 0.5-0.75"
    "incPerCap 100 rural sh_Agin 0.75-1.00"
    "incPerCap 100 urban sh_Agin 0-0.5"
    "incPerCap 100 urban sh_Agin 0.5-0.75"
    "incPerCap 100 urban sh_Agin 0.75-1.00"
/;
```

The Python code also automatically defines the thresholds for the active classification criteria:
In case of percentiles, such as for the item “incPerCap”, the values are replaced based on the statistical analysis. Again, to speed up processing, we define mapping sets for each classification criteria which indicates to which class a certain country household combination belongs. The code shown below uses globals (not shown) as the names of the fields are defined via the GUI and not hard-coded in the GAMS code itself:

```gams
PARAMETER p_incPerCap(microR, incPerCap) /
(set.microR), "incPerCap 25" 25
(set.microR), "incPerCap 50" 50
(set.microR), "incPerCap 75" 75
(set.microR), "incPerCap 100" 100
/
PARAMETER p_urban(microR, urban) /
(set.microR), "rural" 0
(set.microR), "urban" 1
/
PARAMETER p_sh_Agin(microR, sh_Agin) /
(set.microR), "sh_Agin 0-0.5" 0.5
(set.microR), "sh_Agin 0.5-0.75" 0.75
(set.microR), "sh_Agin 0.75-1.00" 1.00
/
```

Next, we aggregate the household data using the aggregation weights. That requires linking each single household entry `hhid` to the aggregate category `hhagg`:

```gams
set country_hhid incPerCap(microR, hhid, incPerCap);  
country_hhid incPerCap(microR, hhid, incPerCap) 
= sum( country_hhid(microR, hhid, incPerCap) (p_dataCompact(microR, hhid, "incPerCap") gt p_incPerCap(incPerCap-1)) or (incPerCap.pos eq 1) 
and (p_dataCompact(microR, hhid, "incPerCap") le p_incPerCap(incPerCap))) ,1)
set country_hhid urban(microR, hhid, urban);  
country_hhid urban(microR, hhid, urban) 
= sum( country_hhid(microR, hhid, urban) (p_dataCompact(microR, hhid, "urban") gt p_urban(urban-1)) or (urban.pos eq 1) 
and (p_dataCompact(microR, hhid, "urban") le p_urban(urban))) ,1)
set country_hhid females(microR, hhid, femHead);  
country_hhid females(microR, hhid, femHead) 
= sum( country_hhid(microR, hhid, femHead) (p_dataCompact(microR, hhid, "femHead") gt p_femHead(femHead-1)) or (femHead.pos eq 1) 
and (p_dataCompact(microR, hhid, "femHead") le p_femHead(femHead))) ,1)
```

We need a separate statement for the weights:

```gams
parameter p_BBDataFac(microR, *, datVar);  
p_BBDataFac(microR, hhagg, datVar) @ not names(datVar, "weight")  
= sum( hhid incPerCap urban femHead hhagg incPerCap urban femHead) (p_dataCompact(microR, hhid, \hiddatVar) 
and country_hhid incPerCap(microR, hhid, incPerCap) 
and country_hhid urban(microR, hhid, urban) 
and country_hhid females(microR, hhid, femHead) 
and p_dataCompact(microR, hhid, "weight"));
```

After these statements, the data for the aggregate household comprise totals, i.e. the sum of the single observations multiplied with the weights. In order to express the items on a per household basis, we have to divide the sum of the weights. Equally, in order to ease inspecting the data, we express the weights for each aggregate household as percentages on the total:
The resulting data set was checked for the exhaustion conditions discussed above, i.e. total income adding up and adding up of various share positions. The resulting data look like (only a selection):

That approach offers quite some flexibility to define household types from the FAO data set without additional coding efforts. For more specific tasks, the code can be used as the basis to develop own aggregation routines which can be called from a file stored under “\scen\myGtap”.

Integrating the data into the myGTAP accounting framework

Household surveys are a rich source to introduce household specific transactions into a CGE but their accounting logic often poorly matches the representation of transactions in a SAM. We present in the following an approach which tries to carry a larger share of the data reported on the earning side from the FAO’s household surveys into the *myGTAP* module of *CGEBox*.

The *myGTAP* module links primary factor earnings from the different production activities to the household by letting them manage their own primary factor stocks. The management is depicted in a stylized way by a revenue maximization problem represented by Constant Elasticity of Transformation function which captures the different real-world phenomena which render factor mobility sluggish. That means, for instance that households will not (and cannot) simply switch from being employed in one sector to another if wage rates change. Furthermore, it allows for household specific saving rates, direct tax rates and can depict government transfers as well as transfers between household types.

In order to determine spending behaviour, we use the AIDADS demand system built into *CGEBox* to estimate income dependent changes in the demand shares given the national averages found in the GTAP data base.

Factor income and link to activities

The household survey data prepared as discussed above report shares of revenue categories (wages, public and private transfers, income from agriculture etc.) on total household income, total household income, household size and its relative weight.

1. **Agricultural income**
Agricultural income is reported for crops and livestock activities. Using the household total income and the reported share for crop or livestock activities should match conceptually the total primary factor income from these activities in the SAM. We hence assign shares of these factor incomes based in the given weight (total income times shares from crop or livestock activities).

In order to produce a better match to the SAM, we first calculate the absolute income for each aggregate household and scale the result to yield shares. To do so, we multiply the per-household income with its population weight which should give the economic weight on total income. The total for each aggregate household is then divided by the sum over all household to yield shares:

Based on these shares, we allocate distribution shares for the agricultural primary factors for crop and livestock activities to the households:

2. Wages

The reported income from wages by skill category in different sectors (total factor income times reported share from wages) is used as a distribution key for wage income from the different sectors:

3. Income from self-employed:

The same logic as for wages is used:

If there are still missing shares, we use total non-farm income:

We also opted to introduce some assumption on income dependent factor specific direct tax rates with the following parameter which depicts differences in tax rates. The first assumption is that households which receive a higher share of public transfer than the average across all households will pay lower direct tax rates:
We estimate differences in saving rates based on the regression for macro-saving rates as part of G-RDEM, making sure that we don’t yield negative saving rates and start from a minimum level of 5%.

As the maximum rate found in the sample use for the regression where below 40%, we restrict the initialization to 50%:

\[
\text{shrhlds} \text{[fac0, hhlds, "dirTax", t0]} = \text{eps};
\]

\[
\text{shrhlds} \text{[fac0, hhlds, "dirTax", t0]} \cdot \text{p.HHDataFao} \text{[fac0, hhlds, "popWeight"]} = 1 - \text{p.HHDataFao} \text{[fac0, hhlds, "shipTransfer"]} \cdot \text{p.meanTransfer} \text{[fac0]} \cdot \text{p.HHDataFao} \text{[fac0, hhlds, "popWeight"]};
\]

Transfers

The data set reports the shares of private and public transfers received on income. The data cannot be easily used to assign some numbers. Instead a constrained optimization problem is defined. Its aim is not only to define the transfers but also to generate income levels which in relative terms come close to the reported in the FAO data set.

It comprises the following balancing equations:

1. The reported income share on total income should be recovered, where \(rs \) are the regions, \(hhlds \) the household and \(t0 \) the benchmark period. Household income from the differences sources is defined as \(hinc \) and \(v_{corr} \) are endogenous correction factors to minimize:

 \[
 \text{e.totInc} \text{[rs, t0]} = \text{e_hincRel} \text{[rs, hhlds, "income"]} \cdot \text{hinc} \text{[rs, hhlds, t0]};
 \]

 \[
 \text{v.totInc} \text{[rs, t0]} = \text{hinc} \text{[rs, hhlds, t0]} \cdot \text{p.HHDataFao} \text{[rs, hhlds, "income"]} \cdot \text{v.cor} \text{[rs, hhlds, "income"]};
 \]

2. Total household income is defined from the given allocated factor income \(factyH \) and direct taxes \(dirTax \) on primary factors \(f \), plus the endogenously determined transfer from government \(trng \) and transfer between households \(trnh \). The variable \(trnh \) carries the delivering household on the second index and the receiving household on the third. We also consider remittances received \(remiH \) and a share on wages \(remoh \) which is sent abroad:\footnote{The data on remittances are available at bi-lateral level from the GTAP-MIG data base and define the total of remittances received and sent for each country resp. aggregate of countries.}
3. Income shares from public transfer should be recovered, a correction factor allows for deviations. Note that we don’t have these data from the SAM, they are indirectly constructed by the balancing program.

4. Transfer income from other households should be recovered, again allowing for deviations based on a correction factor:

5. Two equations ensure firstly that the given remittances are exhausted and that estimated shares come close to given ones:

The above equations define the constraints for a penalty function which minimizes squared differences for the four correction factors, given a high weight for recovering the relative income levels. We add terms which penalize transfer from poorer to richer households.
Saving rates and foreign income contributions

The household surveys do not comprise data on saving rates. Unfortunately, due to the regional household concept, the GTAP data set reports only the total regional savings as the sum of savings (or additional debts) by private households, firms and public institutions. What is available from the SAM are total tax income \(y_{\text{TaxTot}} \), factor income after depreciation \(\text{facty} \), direct taxes \(\text{dirtax} \) and the private \(yc \) and public consumption \(yg \) expenditures. Equally missing are data of transfers from the government to households \(trng \). They are not needed for the regional household approach found in the GTAP Standard model as they net out if we add income sources of public and private agents. (The same holds for transfers between different households in the same country).

That means that we know for the government the usual main income source (\(tax\) income) and know what it spent for consumption (\(yg \)), but miss data on savings or transfers to households:

\[
\bar{yg} + trng + savg = \bar{yF}axTot
\]
(31)

Similar for the private aggregate household, we miss data on its savings (and again on transfers received from government):

\[
\bar{yc} + savc = \bar{yFacty} - dirtax + trng
\]
(32)

What is known are total regional savings \(rsav \):

\[
\bar{rsav} = savc + savg
\]
(33)

From the given balanced data found in the SAM reflecting the equivalence of regional household income earned (RHS) and spent (LHS), it also holds that:

\[
\bar{yg} + \bar{yc} + \bar{rsav} = \bar{yFacty} + \bar{yF}axTot - dirtax
\]
(34)

These four accounting identities are linear dependent as seen easily from the fact that the government transfers \(trng \) can be set to zero, and \(savg \) and \(savc \) chosen to close the government (1) and private household budgets (2). Adding next (1) and (2) leads over (3) to the identity found in (4).

That implies that we need either additional data or use assumptions to define government transfers \(trng \) and the two savings positions. As governments seldom achieve a budget surplus, a rather simple rule sets \(savg \) to zero in case that total regional saving \(rsav \) is positive. That defines government transfers to households \(trng \) from (1), i.e. tax income is exactly exhausted by public consumption and transfers to households. Identity (32) than reflects that the households performs all regional savings as \(savg \) is zero by assumption. In case of overall negative savings, we set instead \(savc \) to zero (in opposite to government, it is not likely that the aggregate household has a structural deficit), and calculate from there the necessary transfers \(trng \) to close the household’s budget. That implies that the total and under that case negative regional savings become in full additional debt of the government.

The balancing becomes only slightly more complex if we take remittances or other income exchanges with the rest-of-the world \(finc \) (for foreign income) into account:

\[
\bar{yc} + savc = \bar{yFacty} - dirtax + trng + finc
\]
(35)

These income flows are part of the balance of payment, if introduced in the existing data base, the foreign savings \(fsav \) needs to be corrected by the same amount from the B.O.T. equals B.O.P. condition.
\[\bar{M} - \bar{X} = \text{sav}_f + f\text{inc} \] \hfill (36)

As the additional income \(f\text{inc} \) in (35) on the RHS will increase savings \(\text{save}_c \) of the household on the LHS by the same amount, we also main the identity of investments \(I \) and total saving \(S \), the latter equal to the sum of foreign and regional savings:

\[\bar{I} \equiv \bar{S} = \text{sav}_f + \text{save}_c + \text{sav}_g \] \hfill (37)

Alternative assumptions on the distribution of total regional savings to government and private households are clearly possible as long as the accounting identities are maintained.

3.1.5 Post-model micro-simulation

Post-model micro-simulation became fashionable about fifteen years ago (cf. Cockburn 2006). It reflects the growing insights in the differentiated impacts of policy reform such as trade liberalization or structural adjustment programs on the different households. There are two major pathways how data of individual households are updated in that type of analysis: form the earning and form the spent side. From the earning side, policy reforms will lead to differentiated impacts on factor returns depending on the factor and the sector. Especially with sluggish factor markets, households can see their factor income develop quite differently depending in which sectors they are engaged, and, from which factors they draw income. Policy reforms can also directly affect factor returns e.g. by changing direct tax rates or factor taxes respectively subsidies faced by the different sectors. Many households depend also on private and public transfers. In the latter case, changes in tax income or how tax income can affect them. For private transfers, income changes of their donors typically also impact the size of transfers. Impact from the spent side results from changes in consumer prices, by changes in domestic and foreign production costs, trade margins and the various taxes and subsidies which define consumer prices from production costs. These general considerations lead to a rather straightforward approach described next which reflects the state-of-the-art in that field.

The post-model micro-simulation builds technically on three steps which reflect the considerations above. First, changes in factor prices and factor quantities as well as tax and regional income from the CGE simulation are used to update the income position of each household in the FAO household data set. Second, we use the AIDADS demand system to estimate budget shares; results from the G-RDEM estimation of the saving rates allow to estimate saving rates specific to each household, and finally, we assign to each household a share of government consumption. That allows calculating the money metric for each household. The final step summarizes the results based on a regression of the money metric on income composition and by calculating percentiles of key results and household features, sorted by the money metric.

Updating household income

The FAO data set reports shares on total household income for different wage categories, for self-employed, crop and livestock production, public and private transfers and an additional position. We detail next how these different elements are used to update the reported benchmark income for each household.

For wage income, we use changes in factor returns to the specific skill category and the individual GTAP sectors linked to the more aggregate categories in the FAO data set to estimate the change in wage income:
For instance, for the second wage category linked to extraction, the following sectors are used:

\[
\text{set datvars_l_a(datVars,1,a) /}
\]

\[
\text{shlwge2_1.unskLab \{coa_a.oil_a.gas_a.comm_a\}}
\]

\[
\text{shlwge2_2.nskLab \{coa_a.oil_a.gas_a.comm_a\}}
\]

\[
\text{shlwge2_3.unskLab \{coa_a.oil_a.gas_a.comm_a\}}
\]

For self-employed and agriculture income from crop respectively livestock production, all factor returns are used (wages, interest, returns to natural resources and land) as it is probably rather unclear how especially wage income accruing to the household from a farm it manages is accounted for in the SAM and the household survey:

\[
\text{The the different aggregates (2-10) for which income from self-employment is reported in the FAO data (such as manufacturing) are mapped to the GTAP sectors:}
\]

\[
\text{set datvars_self(datVars,_a) /}
\]

\[
\text{shSelSelf_2.oil_a.gas_a.comm_a}
\]

\[
\text{shSelSelf_3.manuf}
\]

\[
\text{shSelSelf_4.food_a}
\]

\[
\text{shSelSelf_6.tra_a}
\]

\[
\text{shSelSelf_7.trs_to_com}
\]

\[
\text{shSelSelf_8.fin_in_real}
\]

\[
\text{shSelSelf_9.serv_scoos}
\]

\[
\text{datVars_self("shSelSelf_10",nonAgr) = YES;}
\]

Public transfers are we update with changes in total tax income. That assumes the value share of tax income spent on transfers to each household type is unchanged:

\[
\text{--- income from public transfer: tax income}
\]

\[
\text{p_micropes_countryH_hd_ms_microh_hid_p_pubTransfer_t_sim}}
\]

\[
\text{= p_compact_microh_hid_"totIncome" \[p_compact_microh_hid_\"hhid_transfer"\]}
\]

\[
\text{\"yf_tax_out_microh_t_sim\}/\"yf_tax_out_microh_t_sim\}}
\]

For private transfers, we assume that payments follow the aggregate private consumption changes:

\[
\text{--- income from private transfer: private consumption}
\]

\[
\text{p_micropes_countryH_hd_ms_microh_hid_p_privTransfer_t_sim}}
\]

\[
\text{= p_compact_microh_hid_"totIncome" \[p_compact_microh_hid_\"hhid_privTransfer"\]}
\]

\[
\text{\"y_c_microh_hh_hid_t_sim\}/\"y_c_microh_hh_hid_t_sim\}}
\]

For the remaining positions under “other” which refer, for instance, to non-farm rental income and remittances (where the data set often fails to provide a detailed composition), we use changes in regional income:
myGTAP module

```c
* --- other income: regional income
* p_microRes(country_hhid(microR,hhid),"other",tSim)
  = p_compact(microR,hhid,"totIncome") * p_compact(microR,hhid,"shlOther")
  * rev.1.microR.tSim/rev.1(microR,"eco")
```

After these changes, all income categories found in the FAO data set have been updated based on the CGE results such that changes in income in real terms from the income generation side are simulated. The notion of real terms reflects that there is not inflation in the CGE as only relative prices matter for simulated changes in quantities. The usual case in the GTAP model is to use a world factor price index as the numeraire.

Estimating budget shares, their changes and the money metric

Income changes at inflation free factor prices alone are not sufficient to assess how policy reforms or other changes impact the economic situation of individual household. We need also to reflect which prices they face for the goods they are consuming.

The next step is therefore to estimate the impact of changes in consumer prices. The code is only active for the AIDADS demand system which is especially suitable to capture impacts of changes in income levels on consumption pattern due to is rather non-linear Engels curves which have been econometrically estimated (Britz and Roson 2019). In a first step, we calculate cardinal utility for each household from an econometrically estimated relation to per capita income:

```c
p_microRes(country_hhid(microR,hhid),"incPerCap",tSim)
= exp( -9.2793 + 1.49855 * log(p_microRes(microR,hhid,"incPerCap",tSim))
  - 0.02942 * log(p_microRes(microR,hhid,"incPerCap",tSim)))
```

From there, we define the marginal budget share as a linear combination of the marginal budget shares at very low income (= utility) level α_{AIDADS} and the ones at very high income (= utility) level β_{AIDADS}:

```c
p_microRes(country_hhid(microR,hhid),i,tSim) $\propto$ p_microRes(microR,hhid,"incPerCap",tSim)
  / (1 + p_microRes(microR.hhid,"incPerCap",tSim))
```

Given the absolute term of the AIDADS demand system γ_{LES}, we can define the non-committed income, the i.e. the income distributed by the marginal budget shares defined above:

```c
p_microRes(country_hhid(microR,hhid),"nonComit",tSim) p_microRes(microR,hhid,"incPerCap",tSim)
  * sum(1 + axFlac(microR.i,"hhid"), gammaLES(microR.i,"hhid",tSim)*1.E-6)
```

The non-committed income in combination with the marginal budget shares allow to define the consumer price index for each household:

```c
p_microRes(country_hhid(microR,hhid),"pCons",tSim) $\propto$ p_microRes(microR,hhid,"incPerCap",tSim)
= sum(1 + axFlac(microR.i,"hhid"),
  -- Arvington demand times price, divided by income + budget share $\propto$ summed defines teh hhid specific consumer price
```

6 The actual code also considers demand nests.
The contribution to utility from government consumption is based on the simple assumption that each citizen consumes the same share on the total amount.

--- distribute government consumption on a per capita basis

\[
\begin{align*}
p_{\text{microRes}}(\text{countryhid}(\text{microR,hhid}), "gy", tSim) & \times \text{pop}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim) \\
& = \text{gy}_{1}(\text{microR, tSim}) \times \text{scale} \times 1000. / \text{pop}_{1}(\text{microR, hhid}, tSim);
\end{align*}
\]

From that assumption follows that the utility of poorer household depends to a larger share on the development of government consumption compared to richer ones:

--- calculate implicit share of government consumption on regional income per capita

\[
\begin{align*}
p_{\text{microRes}}(\text{countryhid}(\text{microR, hhid}), "gy", tSim) & \times \text{pop}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim) \\
& = \text{pop}_{\text{microRes}}(\text{microR, hhid}, "gy", tSim) \times (1 / \text{pop}_{\text{microRes}}(\text{microR, hhid}, "betas", tSim)) \\
& \times (1 / \text{pop}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim)) \\
& \times \text{pop}_{\text{microRes}}(\text{microR, hhid}, "betas", tSim) \times \text{pop}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim);
\end{align*}
\]

For savings, we first estimate saving rates depending on per-capita income, using the regression coefficient from the G-RDEM model (Britz and Roson 2019). We cut-off estimates above 50% as the largest macro-saving rate found in any country in the underlying estimation was around 40% while per capita income levels at household level found in the samples easily exceed even the highest mean per capita income found for any country in the GTAP data set used in the econometric analysis. Note also that the CD-utility function does not allow for negative cost shares. We hence exclude cases where the household spends more than he earns (it is not clear if credits fall under other income):

\[
\begin{align*}
\text{parameter } \text{pavgInc}(\text{microR, tSim}) \\
\text{pavgInc}(\text{microR, tSim}) & = \text{sum}(\text{countryhid}(\text{microR, hhid}), \text{p}_{\text{compact}}(\text{microR, hhid}, "weight") \times \text{p}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim)) / \text{pavgInc}(\text{microR, tSim});
\end{align*}
\]

With shares of (implicit) income spent to private (betap) and public (betag) consumption and savings (betas) defined, the utility level for each household can be calculated from the indirect utility function of the assumed top-level CD demand system:

--- use indirect utility function to derive utility from income and arguments of CD-utility function

\[
\begin{align*}
p_{\text{microRes}}(\text{countryhid}(\text{microR, hhid}), "u", tSim) & \times \text{p}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim) \\
& = \text{p}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim) \times \text{p}_{\text{microRes}}(\text{microR, hhid}, "betas", tSim) \times \text{p}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim) \\
& \times \text{p}_{\text{microRes}}(\text{microR, hhid}, "betas", tSim) \times \text{p}_{\text{microRes}}(\text{microR, hhid}, "incPerCap", tSim); \\
\end{align*}
\]

Given the utility levels from the indirect CD utility function, we can calculate the money metric as the ultimate measure of changes in the households purchasing power. The money metric reflects both changes in income (factor income, transfers, other) and the different price indices, considering differences in marginal budget shares across per capita income levels, saving rates and in the importance of government consumption in total household consumption:
We consider the money metric as the most suitable indicator to assess the well-being of households which can be calculated from the data set.

Analysing the micro-simulation results

The samples for the different countries each cover several thousand observations such that it makes limited sense to analyse outcomes for each household separately. Instead, we first summarize findings in percentiles. To do so, we sort the households by their money metric, i.e. their changes in per capita purchasing power, and report for each quantile average earning shares and other results. We need to use the weights reported for each household. As GAMS is not designed for statistical analysis, especially reflecting the weights leads to somewhat clumsy code. We still consider it advantageous to stick to GAMS instead to moving data between different software packages.

As a first step, we use the GDXRank utility to define a sort index. As GDXRank works with a vector, we have to copy the money metric results for each household from the multi-dimensional parameter `p_microRes` to a temporary one-dimensional parameter `p_temp`. The permutation index returned `p_index` is used to define lags and leads in order to generate a sorted copy of the results of interest, as represented by the set `res`.

```plaintext
p_temp(curHid) = p_microRes(microH, curHid, "num", tSim);
execute unload "rank_in.gdx", p_temp;
execute 'gdxrank rank_in rank_out.gdx > system.multiplet';
execute_load "rank_out.gdx", p_index = p_temp;
p_index(curHid) = p_index(ord(curHid));
p_Sorted(curHid + p_index(curHid), res) = p_microRes(microH, curHid, res, tSim);
```

Next, we sum up as the weights, and set the threshold for the first percentile as 1% of the total weights:

```plaintext
sumOfWeights = sum(curHid, p_compact(microH, curHid, "weight"));
p_threshold = sumOfWeights/100;
count = 1;
```

In a loop over all households in the country, we add up the weights over all households `p_curSumW` as well the weights `p_curSumWQ` and variables of interest multiplied with their weights `p_curSumQ` for the next quantile to calculate. If the sum of all weights exceeds the next threshold, we calculate the averages for the result variables by dividing by the sum of weights in the current quantile. The results are collected in the `p_quantiles` parameter. In order to prepare for the next quantile calculation, we rest the sum for the next quantile and update the threshold.
One might now guess from the income shares etc. reported for the different quantiles where differences stem from. In order to improve here, we estimate an OLS model which use per capita income and the different shares as explanatory variables. The regression coefficients with high p-values can help to interpret the results. To do so, we use the LS solver from GAMS:

```plaintext
set expv(datavars) expv(addtnc) = YES; expv("incpercap") = YES;
variable v_sq,v_cnst,v_par;
equation e_sumw,e_fit;

* --- simple linear model which estimates the money metric
* from the income shares and total income
*
e_sumw.. v_sq =e= 0;
e_fit(coutryhid(curMicroR,curHid),ts)..
   p_microRs(curMicroR,curHid,"mt",ts) := v_cnst + sum(curExpV, v_par[curExpV]) * p_compact(curMicroR,curHid,curExpV);

solve n_leastsq using lp minimizing v_sq;
execute_load 'ls', sm, sigma, r2, df, tval, pval;
if ( ca2Id(tval) eq card(curExpV)+1, 
   p_quantiles(microR,"par",curExpV) = v_par(curExpV);
   p_quantiles(microR,"p-Val",curExpV) = sm(xis $ (xis.pos+1 eq curExpV.pos),pval(xis));
   p_quantiles(microR,"t-Val",curExpV) = sum(xis $ (xis.pos+1 eq curExpV.pos),tval(xis));
   p_quantiles(microR,"se",curExpV) = se[curExpV];
   p_quantiles(microR,"r2","" ) = r2;
   p_quantiles(microR,"df","" ) = df;
);```

Processing the results is somewhat cumbersome as the parameter and test statistics are not correctly labelled:

The results can be inspected with the interface, we offer:

1. Histograms which show the distribution of the various items (either for aggregated groups or rather details), for instance:
2. The same information, in cumulative format:

Both can also be shown as tables.

3. Finally, we show results for the OLS estimation:
CGEBox – a flexible and modular toolkit for CGE modelling in GAMS

3.1.6 References


3.2 A GMIG module for CGEBox

Wolfgang Britz, November 2019

3.2.1 Background and motivation

The GMIG data base (cf. Walsmley and et al. 2011) reports international bi-lateral labour and population migration along with wage differences. Specifically, it extends the GTAP standard data set with data on persons employed of a certain nationality working in other countries and the wages they receive at market, buyers’ and sellers’ prices. It also adds data on bi-lateral remittances. One of the interesting features of the GMIG data base is that reports persons such that wages per capita can be defined. The data base was developed to source the GMIG model which simulates changes in these variables. The GMIG model otherwise is a rather straightforward extension of the GTAP standard model. Extending CGEBox with that module, especially for long-run analysis, seems therefore inviting.

GMIG makes considers that the labour stock and population of a country consists of nationals and migrants. The GMIG module in CGEBox assumes that an aggregate agent in each home country manages the labour stocks by skill category of nationals and distributes them to the home country and abroad according to a Constant-Elasticity-of-Transformation function such that revenues from wages after direct taxes and corrected for the consumer price index are maximized. Migrant labour leaves its home country along with some dependents and updates the population at home and abroad. Migrants send a share of the labour income as remittances back to the country they originate. Tax rates paid by firms and direct taxes paid by employees differ by country of origin.

3.2.2 Equations

The key equation in the GMIG model links the number of workers of skill category \( l \) from region \( rNat \) who work in another region \( rNat1 \) to differences in wages after direct taxes \( \kappa app MIG \) based on a CET function, i.e., we assume that labour migration reflects a revenue maximization problem. To do so, we define purchasing power corrected wages \( v_wagePP \) of workers from \( rNat \) received in \( rNat1 \), using the consumer price index \( pcons \) to reflect changes in purchasing power:

\[
v_wagePP_{rNat,rNat1,l} = v_wagePP_{rNat,rNat1,l}(1 - \kappa app MIG_{rNat,rNat1,l})/pcons_{rNat1} \quad (38)
\]

For all equations, the diagonal elements \( rNat,rNat \) are defined as well, they denote e.g. the workers who are employed in their home country. The average wage \( v_wagePPA \) received for workers from \( rNat \) is defined from the dual price index at a transformation elasticity of \( omegaXftMig \) and share parameters \( gXF_TMIG \):

\[
v_wagePPA_{rNat,l} = \left[ \sum_{rNat} gfXFTMig_{rNat,rNat1,l} v_wagePP_{rNat,rNat1,l}(1+omegaXFTMig) \right]^{1/(1+omegaXFTMIG)} \quad (39)
\]

The CET distribution determines the number of workers \( v_xMig \), measured in constant dollars at market prices, from \( rNat \) working in \( rNat1 \) by distributing the given labour stock \( p_xftMig \) of the originator country:
$$v_{XFMIG_{rnat,rnat,l}} = \frac{g_{XFMIG_{rnat,rnat,l}} p_{XFMIG_{rnat,l}}}{(v_{wagePP_{rnat,rnat,l}} - v_{wagePP_{rnat,l}})^{\omega_{XFMIG}}}$$ (40)

Adding up over the workers from different regions $rnat_1$ currently working in $rnat$ defines the labour stock in $rnat$ and drives the price for labour $pft$:

$$XFT_{rnat,l} = \sum_{rnat_1} v_{XFMIG_{rnat,rnat,l}}$$ (41)

As the data base reports bi-lateral tax rates from a buyers’ $fctx$ and sellers’ $kappaf$ perspective, we need to derive average rates applied in a country to the labour stock by skill category $l$:

$$XFT_{rnat,l} pft_{rnat,l} kappaf_{rnat,l} = \sum_{rnat_1} v_{XFMIG_{rnat,rnat,l}} pft_{rnat,l} kappaf_{rnat,rnat,l}$$ (42)

In case of factor taxes, the update process is somewhat more complex as factor taxes are defined specific per activity in the GTAP standard model where the GMIG data base seems to report only average differences across activities:

$$XFT_{rnat,l,a pft_{rnat,l} fctx_{rnat,l,a}} = \sum_{rnat_1} v_{XFMIG_{rnat,rnat,l,a pft_{rnat,l} fctx_{rnat,l,a}}} (fctx_{rnat,l,a} + v_{fctxMIG_{rnat,rnat,l}} - v_{fctxMIG_{rnat,l}})$$ (43)

In both cases, the model equations drop the price weights $pft$ which is found on both sides. They are shown in the equations above to underline that we use a value weighted average which fits the ad-valorem tax rate definitions used in the model.

Finally, we assume that the average relation between migrated people $popMig$ and workers stays identical, using the head count $p_{labMig}$ by skill category reported in the data:

$$\frac{popMig_{rnat,rnat_1}}{popMig_{rnat,rnat_1}} = \frac{\sum_i p_{labMig_{rnat,rnat_1,i}} v_{XFMIG_{rnat,rnat_1,i}}}{\sum_i p_{labMig_{rnat,rnat_1,i}} v_{XFMIG_{rnat,rnat_1,i}}}$$ (44)

From there, the current population in a country $pop$ is defined

$$pop_{rnat,hstd} = \sum_{rnat_1} popMig_{rnat,rnat}$$ (45)

The remittances $v_remit$ are defined relative to base year level:
A GMIG module for CGEBox

\[ v_{\text{remit}}_{\text{nat}, \text{nat}1} = \sum_{l} v_{xfMig}^{l} g_{\text{nat}, \text{nat}1, l} p_{\text{remit}}_{\text{nat}, \text{nat}1, l} \quad (46) \]

As the remittances are part of the original BOP which is equal to BOT, we would need some rebookings to correct regional income and foreign savings to introduce them already at the benchmark where they must be part of the reported data set. We therefore introduce an absolute change in the remittances balance \( f_{\text{inc}} \) (= foreign income), a position already part of the \( myGTAP \) module:

\[ v_{f_{\text{inc}}}_{\text{nat}} = \sum_{\text{nat}1} v_{\text{remit}}_{\text{nat}, \text{nat}1} - v_{\text{remit}}_{\text{nat}1, \text{nat}} - v_{\text{remit}}_{\text{nat}1, \text{nat}0} + v_{\text{remit}}_{\text{nat1}, \text{nat}0} \quad (47) \]

The change enters the BOP = BOT identity and the regional income definitions.

### 3.2.3 Technical aspects

There are number of points to note with regard to the interaction with other modules in \( CGEBox \)

1. The GTAP standard model core has a supply equation for total factor supply \( xf\text{eq} \). This equation is switched off for labour categories if the GMIG module is active as (41) above defines the labour stock.
2. The \( myGTAP \) module has a simplified equation to determine remittances from total labour use in the countries which is replaced by equation (46) above.
3. Some standard closures are changed. So are population and direct taxes on labour fixed by default in the GTAP standard model and become endogenous if the GMIG module is switched on.

The GMIG module is fully compatible with the other modules of \( CGEBox \) and had been tested in various combinations.

### 3.2.4 Result exploitation

The post-model processing adds a table which shows the bi-lateral population and labour force distribution and report the wages receives, at market prices and after direct taxation.
3.2.5 References


3.3 Sub-regional dis-aggregation of production and factor markets in CGEBox

3.3.1 Background and motivation

Especially question around use of immobile natural resources such as land, minerals or water often ask for an analysis at regional level, especially if environmental consequences are to evaluated and externalities have a regional character. It is therefore not uncommon to find sub-regional detail in CGE work at single country level. We present in here a rather basic approach to add such detail to the GTAP model. For Europe, ready-to-use data at the level of NUTS2 regions are automatically added during the data preparation step if single European countries are present in the data set. For other countries or region, the user must supply these data. The interface allows selecting during simulation for which countries the module is active.

3.3.2 Methodology

We implement a rather basic dis-aggregation as a starting point for further work:

1. Outputs are assumed homogenous at national level and no intra-national trade margins are introduced. Consequently, there is one uniform output price faced by all regions in the same nation.
2. Commodity demand is accordingly modeled at national level.
3. Factor markets however are depicted by a CET structure which hence allows for sluggish or even no factor mobility across regions.
4. The tax system is not regionally differentiated.

As a consequence, the data requirements are relatively low, basically, data on output quantities and cost shares net of taxes are required for the framework.

3.3.3 Integration into the modeling framework

There were limited changes necessary to introduce regional detail for the supply side into the model and there were mostly realized via macros. In order to introduce the uniform output prices in the framework the following macro is used:

```plaintext
$iftheni.subregs declared subregs
 $$macro mn_px(r,a,t) sum(r_r(r,rp),m_px(rp,a,t))
$else.subregs
 $$macro mn_px(r,a,t) m_px(r,a,t)
$endif.subregs
```

Where the cross-set \( r\_r(r,rp) \) depict the relation between sub-region \( r \) and nation \( rp \). In case of countries without regional detail, the cross-set depicts a diagonal relation, i.e. \( r\_r(rNat,rNat) = yes \).

In order to avoid problems with a simply linear aggregation from regions to nations, a CES-aggregator is used in the code:
Sub-regional dis-aggregation of production and factor markets in CGEBox

Where omegasi and omegasa either aggregate product or activities from region to nation, both set to 10. That means that the national composition of output from the regions can change rather flexibly.

There are various equations which ensure that firm demand is aggregated over regions to country level, while it is assumed that all regions face the same prices for intermediate inputs. Factor prices clearly differ reflecting the assumption with regard to factor mobility across regions and sectors.

In order to ease reading the code and speeding up execution, the set disr depicts those nations which feature regional detail while the set subr depicts sub-regions. A second equation adds up intermediate input use in each region and sector to national level:

\[
\text{xpMteq(rs[1],5,t,s(t))} \text{ } (\text{xaFlag(r,1,a)} \text{ } \text{disr(r)})
\]

\[
\text{xa(r,i,a,t)/xa.scale(r,i,a,t) } = \text{ } \text{sum(subr } \text{ } s_r(subb, r), \text{ } m_xa(subb,i,a,t))/xa.scale(r,i,a,t);
\]

An additional equation was added which distributes the total national factor xft(disr) to the regional factor xft(subr):

\[
\text{xftMteq(rs[1],fn,ts(t))} \text{ } (\text{xftEqFlag(r,fn)} \text{ } \text{pf.t.range(r,fn,t) } \text{subr(r)})
\]

\[
\text{-- sluggish factor supply based on CET function, factor is part of top level nest}
\]

\[
\text{xft(r,fn,t)/xft.scale(r,fn,t)} \text{ } = \text{ } \text{sum(r } \text{ } xft(disr,fn,subb, r), gfr(subb,fn,r,t)pft(subb,fn,r,t)*xft.scale(r,fn,t) } = \text{ } (\text{pf.t(r,fn,t)/pf.t(disr,fn,t) = omegafr(disr,fn)})
\]

\[
\text{-- fully mobile factor: prices are equal across regions}
\]

\[
\text{(pf.t(r,fn,t) - sum(r } \text{ } xft(disr,fn,subb, r), gfr(subb,fn,r,t)pft(subb,fn,r,t)*xft.scale(r,fn,t) ) } = \text{ } (\text{sum(r } \text{ } xft(disr,fn,subb, r), gfr(subb,fn,r,t)pft(subb,fn,r,t)*xft.scale(r,fn,t) ) eq inf};
\]

Clearly, if the transformation elasticity across regions omegaf is set to zero, the regional factor stock is fixed. The last line in the equation depicts the case of infinite transformation which leads to uniform prices. A matching dual price aggregator defines the price for mobile factors at national level:

\[
\text{-- factor supply from nation to sub-regions}
\]

\[
\text{pfMteq(rs[1],fn,ts(t))} \text{ } (\text{xftEqFlag(r,fn)} \text{ and pf.t.range(r,fn,t) and disr(r)})
\]

\[
\text{-- sluggish factor mobility across regions, dual price aggregator}
\]

\[
\text{(pf.t(r,fn,t) - sum(r } \text{ } xft(disr,fn,subb, r), gfr(subb,fn,r,t)pft(subb,fn,r,t)*xft.scale(r,fn,t) ) } = \text{ } (\text{omegaf(r,fn) ne inf})
\]

\[
\text{-- fully mobile factors across regions, uniform prices } \leftrightarrow \text{ physical aggregation}
\]

\[
\text{(xft(r,fn,t)/xft.scale(r,fn,t) } = \text{ } \text{sum(r } \text{ } xft(disr,fn,subb, r), xft(disr,fn,t)/xft.scale(r,fn,t) ) } = \text{ } (\text{omegaf(r,fn) eq inf});
\]

Not that the last line provides the physical linear aggregation in case that the transformation elasticity is infinite.
In order to avoid that the tax income equation are changed to aggregate over sub-regions, factor use for each activities and matching prices are defined in two additional equations:

\[
\begin{align*}
\text{pfNatEq}(rs(r),f,a,ts(t)) & \in \{ \text{xfFlag}(r,f,a) \} \in \text{disr(r)} \quad \text{..} \\
\text{pf}(r,f,a,t) & \times \text{xf}(r,f,a,t) \times \text{sun}(r_{-\text{rbr}},r) \times \text{xfFlag}(	ext{rbr},f,a), \text{pf}(	ext{rbr},f,a,t) \times \text{xf}(	ext{rbr},f,a,t)); \\
\text{xfNatEq}(rs(r),f,a,ts(t)) & \in \{ \text{xfFlag}(r,f,a) \} \in \text{disR(R)} \quad \text{..} \\
\text{xf}(r,f,a,t) & \times \text{sun}(r_{-\text{rbr}},r) \times \text{xfFlag}(	ext{rbr},f,a), \times \text{xf}(	ext{rbr},f,a,t));
\end{align*}
\]

The code was updated at various places if $r$Nat conditions to avoid that data transformation for sub-regional data are executed which do not relate to production or factor markets. During variable initialization and calibration, it is assumed that the regional data on intermediate input and primary factor use match the national totals (see next section for an implementation). Factor, production and immediate taxes rates are taken from the national SAMs.

\[
\begin{align*}
\text{fctts}1.l(r,f,a,t0) & \in \text{fcttsV8}(r,f,a)/\text{san0}(r,f,a) \quad \text{;} \\
\text{fctts}x.l(r,f,a,t0) & \in \text{fcttsV8}(r,f,a)/\text{san0}(r,f,a) \quad \text{;} \\
\text{fctts}1.l(subB,f,a,t0) & \in \text{sun}(r_{-\text{subB}},r) \times \text{fctts}1.l(r,f,a,t0)); \\
\text{fcttx1}(l(subB,f,a,t0) & \in \text{sun}(r_{-\text{subB}},r) \times \text{fcttx1}(l(r,f,a,t0)); \\
\text{san0}(subB,"fctts"l,a) & \in \text{sun}(r_{-\text{subB}},r) \times \text{san0}(r,f,a) \times \text{fctts}1(l(subB,f,a,"2\text{t02}"); \\
\text{san0}(subB,"fctts"l,a) & \in \text{sun}(r_{-\text{subB}},r) \times \text{san0}(r,f,a) \times \text{fcttx1}(l(subB,f,a,"2\text{t05}");
\end{align*}
\]

The intermediate taxes are implicitly taken over by using the relation between the national Armington intermediate demands and the national SAM entries net of taxes:

\[
\begin{align*}
\text{xa}1.(r_{-\text{rbr}},r_{-\text{rbr}},a,t0) & \in \text{pa}1.(r_{-\text{rbr}},r_{-\text{rbr}},a,t0) \quad \text{;} \\
& \times \text{pa}1.(r_{-\text{rbr}},r_{-\text{rbr}},a,t0) \times \text{pd}_{\text{d}1}(r_{-\text{rbr}},r_{-\text{rbr}},a,t0) \\
& \times \text{mp}_{\text{p}1}(r_{-\text{rbr}},r_{-\text{rbr}},a,t0) \times \text{ex}_{\text{n}1}(r_{-\text{rbr}},r_{-\text{rbr}},a,t0) \times \text{pa}1.(r_{-\text{rbr}},r_{-\text{rbr}},a,t0); \\
\text{xa}1.(subB,r_{-\text{rbr}},a,t0) & \in \text{san0}(subB,r_{-\text{rbr}},a) \times \text{sun}(r_{-\text{rbr}},r) \times \text{fctts}1.(l(subB,r_{-\text{rbr}},a,"2\text{t02}"); \\
& \times \text{san0}(subB,r_{-\text{rbr}},a) \times \text{sun}(r_{-\text{rbr}},r) \times \text{fcttx1}(l(subB,r_{-\text{rbr}},a,"2\text{t05}");
\end{align*}
\]

There were otherwise very limited changes to the calibration code.

### 3.3.4 Implementation for European countries at NUTS2 level

The NUTS (Nomenclature des unités territoriales statistiques) system provides a classification of administrative units for the European Union and some further regions. After NUTS0 (= nation) and NUTS1 (= federal state or similar), NUTS2 provides already relatively small regional units for economy wide assessment and beyond. In the context of the EU funded research project CAPRI-RD (http://www.ilr.uni-bonn.de/agpo/rsrch/capri-rd/caprird_e.htm), regional SAMs at NUTS2 level and matching national ones for the EU member and candidates countries were compiled (Ferrari et al. 2012). The SAMs feature somewhat limited sector detail (Agriculture, Forestry, Other primary, Food processing, Other Manufacturing, Energy, Construction, Trade and transport, Hotels and restaurants, Education, Other Services) which reflects both data availability and the aim to model rural development policies under the Common Agricultural Policy (CAP). A specific feature of the SAMs is a dis-aggregation of intermediate demand to regional, national and imported origin. A matching single country CGE was developed (Törmä et al. 2010, Britz 2012) with a rather detailed driver to map individual rural development measures from the CAP into shocks for the model and an interface to the regional supply models and the market model of the partial equilibrium CAPRI modeling system. So far, the application of that model is rather limited (Schröder et al. 2015, Britz et al. 2015). We use here
Sub-regional dis-aggregation of production and factor markets in CGEBox

only the production data of these regionals SAMs which also breaks down demand to the regional level and provides also details on the national and regional government accounts.

The introduction of the list of sub-regions into the static set \( r = \) all regions which is used as the domain for various variables, equations and parameters requires that the list is available when the data from GTAPAGG are read. Accordingly, the data set program is partly read rather early in the program sequence:

```bash
$if %modulesGTAP_NUTS2==on $batincl 'gtapNUTS2\gtapNUTS2_gms' decl
$batincl 'util\title.gms' '"Load data base for %dataSet%, %shock_withoutPath%"'
$include "%datadir%\gtap6Set.gms"
$include "build\load_gtapAgg.gms"

To load the following list with the NUTS2 regions:

```bash
$iftheni.decl %i==decl

set s_nuts2SAM "NUTS2 labels used in SAM"/
BE100000 "Region de Bruxelles-Brabant"
BE140000 "Hainaut"
BE150000 "Namur"
BE210000 "LÃ¨gion Uclanier"
BE230000 "Antwerp (Arrondissement)"
BE240000 "Vlaams Brabant"
BE250000 "West-Vlaanderen"
BE310000 "Hainaut"
BE320000 "Walloon"
BE330000 "Hainaut"
BE340000 "Luxembourg (B)"
BE350000 "Hainaut"
BG110000 "Steiermark (A)"
BG220000 "SÃ¶sterreich (A)"
BG330000 "Slovenien (C)"
BG340000 "Slowakei (C)"
BG350000 "Tschechien (C)"
BG360000 "Ukraine (C)"
BG370000 "Österreich (A)"
BG380000 "Italien (C)"
BG390000 "Deutschland (D)"
BG400000 "Frankreich (F)"
BG410000 "Groenland (G)"
BG420000 "Irland (I)"
BG430000 "Niederlande (N)"
BG440000 "Schweden (S)"
BG450000 "Schweiz (CH)"
BG460000 "Sverige (S)"
BG470000 "UK (GB)"
BG480000 "Deutschland (D)"
BG490000 "Frankreich (F)"
BG500000 "Italien (I)"
BG510000 "Niederlande (N)"
BG520000 "Schweiz (CH)"
BG530000 "Sverige (S)"
BG540000 "UK (GB)"

The actual data processing consists of the following steps:

1. Defining the regional hierarchy. Currently, the program only introduces sub-regions if the related country is a separate region in the GTAPAGG data set:

```bash
set rSam(r0); rSan(r0) $ sum(r0_msSan(r0,s_msSan),1) = yes;
check(s_msSan) = sum((napr(r0,r),r0_msSan(r0,s_msSan)),1)-1;
set s_msSam_r(s_msSan,r);
* --- take out regions where countries with NUTS2 and without NUTS2 information are mixed
* s_msSam_r(s_msSan,r) $ sum((napr(r0,r),r0_msSan(r0,s_msSan)),1) = YES;
* --- take out regions where countries with NUTS2 and without NUTS2 information are mixed
* s_msSan_r(s_msSan,r) $(s_msSan_r(s_msSan,r) $ sum(napr(r0,r) $ (not sum(r0_msSan(r0,s_msSan),1)),1)) = NO;
```

From there, the regional hierarchy is defined:

```bash
set subReg_r(r2,r); subReg_r(r2,r) $ sum((subReg_nuts2(r2,s_msSan),s_msSam_r(s_msSan,r)),1) = YES;
 r_r(r2,r) $ sum(subReg_r(r2,r),1) = yes;
 r_r(r2,r) $ sum(subReg_r(r2,r),1) = no;

And the list of regions which are dis-aggregated:

```
```
```bash
dist(rMat) $ sum(subReg_r(r2,rMat),1) = yes;
```

104
2. As the regional SAMs will typically feature a differently detail sector list compared to what is used elsewhere in the model, a mapping and consistency check is required. First, the link between the original 57 GTAP sectors and the sectors in the regional SAMs is set up:

```plaintext
* * --- define mapping between current sectors in GTAP models and given sectors in REGCUE
* * set smd_i@{s_ind,iori} / "AGR".(pdr,wht,gre,v_f,osd,c_b,pfb,ocr,ctl,rap,rmk,wo1) "FOR".frs "OPP".(fsh,coa,oil,gs,orn) "FDP".(cm,ont,vol,ml1,per,grd,b_t,tev,mp,lea) "MNM".(lum,pap,p_c,crp,mm,ni_nfn,frp,snf,otn,ele,one,orf) "ENE".(ely,gtc,wtr) "CNS".(cmn,due) "TRF".(trd,otp,wtu,atp) "HOT".ros "EDU".osg "USE".(cmn,ofi,ins,obs,sgds) /
```

First, SAM entries for intermediate input use are set up which assign the (sum of the) original regional SAM to the new commodities and sectors:

```plaintext
* * --- intermediate input use: aggregate regional san entry
* * p_rSan({r2Cur},a) = sum({i_in2(i,ln2),a_in2(a,ln22)}, p_nuts2(R2Cur,ln2,ln22)*gdlScale); p_rSan(R2Cur,"int",a) = sum({i,p_rSan(r2Cur,i,a)};
```

Next, a correction factor is defined and applied which ensures that the regional entries match the national ones:

```plaintext
p_corFacR(rs,balRows,a) = sum(subReg_r(r2Cur,rs), p_rSan(R2Cur,balRows,a)); p_corFacR(rs,balRows,a) * p_rSan(R2Cur,balRows,a) = sum(rs,balRows,a)/p_corFacR(rs,balRows,a);
```

The program is not fully shown here, it also removes tiny regional entries. Finally, the behavioral parameters are defined:

```plaintext
signaw(subReg,a) = sum(subReg_r(subReg,rs), signaw(rs,a)); signand(subReg,a) = sum(subReg_r(subReg,rs), signand(rs,a)); omegaf(rs,fn) = 2.0; omegaf(rs,"capital") = inf; omegaf(rs,"labor") = 0.00;
```

i.e.:

3. The substitution elasticities at national level are also used for the regions, and
4. Land cannot move between regions, capital is assumed as fully mobile and labor as sluggish. Note that natural resources are immobile at sector level.

3.3.5 Result exploitation

So far, there is only one specific view which uses a map with regional detail:
3.3.6 References

Ferrari, E., Himics, M. and Mueller M. (2010): WP2.2 Databases – Regional Social Accounting Matrices Deliverable: D2.2.4, Procedure for the compilation of regional SAMs based on national SAMs and available regional datasets: dataset and documentation; CAPRI-RD deliverable D2.2.4, http://www.ilr.uni-bonn.de/agpo/rsrch/capri-rd/docs/d2.2.4.pdf

3.4 MRIO extension

- Wolfgang Britz and Salwa Haddad, 14.12.2016 –

3.4.1 Background

There is growing interest both with regard to global value chains and life-cycle assessment along such chains which both require information on the bi-lateral sourcing of intermediate demand by industries and final demand agents. We discuss here a module for CGEBox that is able to depict import demand differentiated by aggregate Armington agents, i.e. for aggregate intermediate use, household, government and investments. The module is set-up such that it can be used for specific sectors only, while the remaining ones use the standard Armington model; that selection is done via the GUI. The necessary data stem from the data base of the OECD’s METRO model and can be added during the data preparation step by simply switching an option to active.

3.4.2 Definition of consistent split factors

In order to define a consistent benchmark for the model, the total import demands of the MRIO agents need to be exhausted by their bi-lateral demands for imports while at the same time the given export flows must be exhausted. We apply a Highest Posterior Density (HPD) estimator to derive consistent shares based on the following equations.

We allow during re-balancing that the total import demand and the domestic demand change for the agents change for each product, while their sum is maintained. However, the user can also fix total import (and thus implicitly total domestic demand) during the consistency step.

If domestic demands by individual agents change, we need to ensure that the total domestic output sold is still exhausted by the agents’ summed up demand, ensured by the following equation:

\[
\text{e}_{\text{xmd}}(rc(r),ic(i),aa) \times (\text{e}_{\text{xmd}}(r,i,aa) + \text{dxd}(r,i,aa)) = E- e_{\text{xmm}}(r,i,aa) + e_{\text{xdm}}(r,i,aa) + \text{v}_{\text{xmd}}(r,i,aa); \\
\]

Secondly, each agent’s summed up demand for domestic and import use, both a market and agent prices, need to be maintained:

\[
\text{xmm}(r,i,aa) + \text{dxn}(r,i,aa) = E- \text{v}_{\text{xmm}}(r,i,aa) + \text{e}_{\text{xmm}}(r,i,aa); \\
\]

A further equation ensures that estimated total import demand at market prices \(v_{\text{mm}}\), i.e. at cif values plus import taxes, by each MRIO agent is exhausted by a share of the bi-lateral imports at world market price (after trade margins) \(\text{SAM0}(r,rp,i)\) plus bi-lateral import tariffs \(\text{IMPTXY0}(rp,r,i)\):
Finally, these shares need add up to unity such total imports and import taxes are exhausted:

```
E = sum(rp, (samb(r,rp,i)*lnptzV0(rp,r,i)) * u_share(r,i,rp,mrlonh));
```

Note that a small slack, bounded by +/- 1.E-7 is added to the RHS to account for any numerical accuracies in the in-going global SAM.

As we solve for the shares for total intermediate demand only, we need to ensure that the total import demand over all sectors is equal to that sum:

```
E = sum(a, xmn(r,i,a));
```

The HPD estimator minimizes squared relative differences from the given split factors and from total import demand by agent:

```
E = sum((r(i),ic(i),rp,mrlonh aa(mrlonh,aa)) $ (samb(r,i,aa) and (samb(r,rp,i)*lnptzV0(rp,r,i)),1) $ sum((r(i),ic(i),aa) $ xmn(r,i,aa),1))
```

The problem can be solved for each country and product independently. Accordingly, we solve in a loop to reduce overall computing time by yielding smaller NLP problem. Furthermore, we use the grid solve mechanism to solve all sectors for one region in parallel:

```
loopt (r0),
```

```bash
do n_hpdM.solveLink = 0;

if (n_hpdM.solveLink = 3;
endif;

--- solve individual products on grid
loopt (iCur) $ sum(mrlonh aa(mrlonh,aa), xmn(r,iCur,aa)),
```

```bash
option kill = rc.kill = ic;
rc(r0) = YES; ic(iCur) = YES;
u_share_up(rp,iCur,rp,mrlonh) = 1;
m_hpdM.solveprint = 2;
solve m_hpdM using NLP minimizing u_hpdM;
handleC(iCur) = m_hpdM.handle;
```
After collection of the solutions from the grid, we check if infeasibilities occur. In that case, the bounds on the slacks are somewhat relaxed and the balancing problem is resolved, however now not via the grid solve facility:

```plaintext
$if version $system.gamsrelease$gt=24.5
retCode - readyCollect(handelsC,120);
$endif

$matinclude 'util/title.gms' """Balance MRIO share for 'r.te(r0) ', collect model solutions"
repeat
  leap(iCur $ handleCollect(handelsC(iCur)));
  display $ handleDelete(handelsC(iCur)) "trouble deleting handelsC";
  if (n_hpdMM.numInfeas>0,
    option kill=rc,kill=lc;
    rc(rB) = YES; lc(iCur) = YES;
    u_slackMM.lo(rc,lc,rp) = -1e-6;
    u_slackMM.up(rc,lc,rp) = +1e-6;
    n_hpdMM.colprint = 1;
    solve n_hpdMM using NLP minimizing v_hpdmm;
    if (n_hpdMM.numInfeas > 0,
      u_slackMM.lo(rc,lc,rp) = -1e-3;
      u_slackMM.up(rc,lc,rp) = +1e-3;
      solve n_hpdMM using NLP minimizing v_hpdmm;
    );
    if (n_hpdMM.numInfeas > 0, abort "Imports shares by MRIO agents could not be balanced",rc,lc);
    handelsC(iCur) = 0;
  );
retCode - sleep(card(handelsC)-0.1);
until ((card(handelsC) eq 0) or (timeElapsed > 3600));
```

The process requires about a minute for 57x68 global SAM on a performant desktop.

3.4.3 Derivation of the split factors

We first map the split factors from the OECD METRO model which are based on the GTAP9 data base to the sector and regions of the dis-aggregate GTAP8 data base if that is used. That implies that we use for a couple of cases uniform split factors for service sectors. Furthermore, some countries are missing, here ROW shares are applied. The mapping of these shares to the actual sector and regional aggregation used by the model uses import at world market prices (cif) plus import taxes as weights, i.e. bi-lateral imports at domestic market prices. These weights are stored in a GDX container along with the split factors. The aggregation of the split factors works as follows:

```plaintext
||
| u_share,i(rp,ori,irori) = sum(rg(rp,rsplit),ii(iori,ii)) $ p_splitFactors6(rspl,ori,irori,split), p_weights(rspl,ori,irori,split));
| u_share,i(rp,ori,irori) $ u_share,i(rp,ori,irori) = sum(rg(rp,rsplit),ii(iori,ii)), p_splitFactors6(rspl,ori,irori,split), p_weights(rspl,ori,irori,split));
```

i.e. we first assign the weights and next calculated the weighted average.

3.4.4 Model equations

The model equations in the MRIO extension of CGEBox are equivalent to the second level Armington equations in the standard model, but are now differentiated by the MRIO agents (total intermediate demand int, households hhsl, government gov and investment demand inv).

Bi-lateral import demand by each MRIO agent is expressed via the usual share equations:
The equation substitutes out the CIF price with a macro to reduce model size and allows for the GLOBE solution of small import shares being linked in Leontief fashion to total import demand by the agent.

The total import demand which is distributed by the share equation above is aggregated over the individual agents linked to the MRIO agent, which is only relevant for intermediate input demand:

The average import price of each MRIO agent is defined via the dual price aggregator:

The dual price aggregator considers three cases (1) standard case with a non-unity substitution elasticity, (2) CD-case with a substitution elasticity of unity and (3) the additional contribution of the small shares handled in Leontief fashion.

The link into the overall framework requires defining the aggregated bi-lateral import demands:

The graphical user interface (GUI) is used to generate the split factors when the database is set up, the following checkboxes must be activated:

Data base generation

In order to generate the split factors when the data base is set-up, the following checkbox must be activated:
Furthermore, the user might activate the second check box to fix the import demands during the generation of the MRIO split factors.

Simulation

When running the model, the MRIO module must be switched on:

In which case a tab allows selecting the products where the split is introduced:
3.5 Partial equilibrium closure

The partial equilibrium closure fixed prices and quantities of products not in the current solve. It also treats income as exogenous. Technically, that is implemented by three major approaches:

1. In “model\closures.gms”, the list of including products iIn and activities aIn which produce them is defined:

 $$iIn(i) \Leftrightarrow \sum\{\text{sameas}(i, pe_Sel), 1\} = \text{YES}$$

 $$aIn(a) \Leftrightarrow \sum\{ (r, iIn), xFlag(r, a, iIn)\} = \text{YES}$$

 Where pe_sel are the user-selected products in the partial equilibrium version of the model.

2. Variables referring to products or activities not in the model are fixed, for instance:

 $$xt\text{Nest}._fx[r, t\text{Nest}, a, t\text{Sim}] \Leftrightarrow (xt\text{Nest}._l[r, t\text{Nest}, a, t\text{Sim}] \Leftrightarrow (not aIn(a))) = xt\text{Nest}._l[r, t\text{Nest}, a, t\text{Sim}]$$

 $$pt\text{Nest}._fx[r, t\text{Nest}, a, t\text{Sim}] \Leftrightarrow (pt\text{Nest}._l[r, t\text{Nest}, a, t\text{Sim}] \Leftrightarrow (not aIn(a))) = pt\text{Nest}._l[r, t\text{Nest}, a, t\text{Sim}]$$

 $$va.fx[r, a, t\text{Sim}] \Leftrightarrow (va.l[r, a, t\text{Sim}] \Leftrightarrow (not aIn(a))) = va.l[r, a, t\text{Sim}]$$

 $$nd.fx[r, a, t\text{Sim}] \Leftrightarrow (nd.l[r, a, t\text{Sim}] \Leftrightarrow (not aIn(a))) = nd.l[r, a, t\text{Sim}]$$

3. Equations defining these variables are not included in the model, for instance:

 $$va\text{eq}(rs[r], smr[a], ts[t]) \Leftrightarrow va\text{Flag}(r, a) ..$$

 These fixing need also to be reflected during the pre-solve (solve\presolve.gms) and during calibration and initialization of the different modules.

The user should note that shock files should not update tax rates etc. belonging to products not in the current model as some initialization statements might update for instance prices based on tax rates under the shock.
3.6 Tariff Line Module

3.6.1 Summary
The tariff line module allows to dis-aggregated selected bi-lateral trade flows to a lower detail as we as to explicitly model Tariff Rate Quotas. The user needs to provide the necessary data in a GAMS file in a specific format as detailed below, the file is selected from the GUI.

3.6.2 Background
The GTAP data base offers bi-lateral protection and matching trade flow data based on MacMaps at the level of 57 GTAP sectors which are often further aggregated in model applications. That implies that information on protection measures at tariff line, which might also comprise complex instruments such as Tariff Rate Quotas (TRQs), needs to be aggregated to GTAP sector level and beyond. That might provoke aggregation bias (cf. Himics and Britz 2016). Analysis especially of (potential) Free Trade Agreements requires often detail beyond the 57 sectors of GTAP. The module for CGEBox described in here allows detail at tariff line for selected bi-lateral trade links and commodities while maintaining otherwise the chosen default trade structure for that sector (Armington or Armington plus CET, a combination with the Melitz module is currently not supported). If a MCP solver is available, multiple TRQs at bi-lateral tariff line can be introduced such that applied tariff rates become endogenous. At the same time, the structure provides a fully consistent aggregation from tariff line to commodity level.

The demand representation is based on a three-tier representation: (1) top level demand function such as the CDE in the GTAP standard, (2) First Armington nest between domestic sales and aggregate imports, (3) Bi-lateral Armington nest). A similar structure is found for supply transformation when the CET extensions is used: (1) first CET nest between domestic sales and aggregate exports, (2) CET nest between bi-lateral exports). Splitting up to tariff line level at the bi-lateral trade flow level as the lowest level of the demand system and supply transformation tree might seem odd at first look. One would perhaps rather like to split demand, for instance of dairy, first to tariff lines such as butter, cheese etc. , next determine how much butter etc. is stemming from the home market and from imports, and finally how butter imports are composed from different importers. However, introducing the dis-aggregation and thus the new nest with tariff line information directly below the top level nests requires firstly introducing the tariff line split up for all bi-lateral trade flows of a region, and if a CET application is used, also for all its exporters and thus most probably for all regions in the model. That quickly renders the model quite large. Secondly, data on domestic sales at tariff line level must be available, data which are not generally available.

The proposed approach which rather split below the lowest level thus dramatically reduces data needs as it requires tariff line information on trade flows and protection data only for some bi-lateral links, namely those in the focus of the analysis. Data on domestic sales at tariff lines are not needed at all. Furthermore, it keeps the model at a manageable size even if some bi-lateral trade flows are depicted with rich dis-aggregated tariff line information. That is especially important if TRQs are modelled which requires a MCP solver which typically is slower compared to solving a simple non-linear equation system.

3.6.3 Approach
The user has to apply the following information:
Tariff Line Module

- The set of tariff lines considered and their mapping to the GTAP sectors in the data base used by for model run
- Information on trade for selected bi-lateral trade flows at tariff line level. A bi-lateral trade flow for a commodity will only be depicted at tariff line level in the model when at least one non-zero flows for one tariff line is found. Otherwise, the bi-lateral commodity flow will continue to use the chosen default trade representation for that commodity without a dis-aggregation to tariff line.
- Matching applied tariff or TRQs with in- and out-of-quota rates.

Based on that information, the code will add the necessary equations and variables for the selected trade links, fit the data to the given benchmark and introduce matching parameters.

Note again that Melitz extension cannot be combined with the tariff line module for a product.

3.6.4 Model equations

The code for the tariff line sub-module can be found in the sub-directory “gams\tariffLines”. The equations and core definition are found in “tariffLines_model.gms”.

The code of the model comprises four equations:

- Two equations which define the bi-lateral exports and imports at tariff line level
- And two matching dual price aggregators which define the bi-lateral export and import prices at the level of GTAP commodities at bi-lateral level.

The bilateral export supply equation is shown below:

\[
\text{e}_{\text{wwstl}}(\text{rNat}, \text{tl}, \text{rNat1}, \text{ts}(t)) \leq \text{p}_{\text{gwtl}}(\text{rNat}, \text{tl}, \text{rNat1}, t) \]

\[
\text{xw}_{\text{tl}}(\text{rNat}, \text{tl}, \text{rNat1}, t) = \text{e} = \text{sum}[\text{tl}_{\text{i}}(\text{tl}, i), \text{p}_{\text{gwtl}}(\text{rNat}, \text{tl}, \text{rNat1}, t) \times \text{xw}_{\text{i}}(\text{rNat}, i, \text{rNat1}, t) \times \text{ptl}_{\text{tl}}(\text{rNat}, \text{tl}, \text{rNat1}, t) / \text{pe}(\text{rNat}, i, \text{rNat1}, t)]^* \text{p}_{\text{omegawl}}(\text{rNat}, i) ;
\]

The parameter \(p_{\text{wgtl}}\) depicts the share of the tariff line \(\text{tl}\) in total bi-lateral trade of commodity \(i\) shipped from exporter \(\text{rNat}\) to importer \(\text{rNat1}\). The equation is hence only introduced if a share parameter was defined during calibration, i.e. for such bi-lateral trade flows where information on that tariff line was provided.

Note that the variable \(\text{pe}\), the bi-lateral export price, is part of the standard model when non-infinite CET is used while the price at the tariff line level \(\text{ptls}\) is not. Note equally that in the standard layout, bi-lateral export and import quantities at commodity level \(\text{xw}\) are by definition equal as they are no quality differences considered at that level without tariff line detail. That is no longer the case when the additional CES and CET nests at tariff line level are active such that the bi-lateral export quantity is now depicted by \(\text{xws}\) as a CET aggregate over tariff line. It is only identically to \(\text{xw}\) in the benchmark, in a simulation, the (implicit) non-linear aggregation based on the CES and CET will let the aggregate supply and demand quantities deviate.

The average import price is defined as follows:

\[
\text{e}_{\text{pe}}(\text{rNat}, \text{i}, \text{rNat1}, \text{ts}(t)) \leq \text{gw}_{\text{rNat}, i, \text{rNat1}, t} \times \text{sum}[\text{tl}_{\text{i}}(\text{tl}, i), \text{p}_{\text{gwtl}}(\text{rNat}, \text{tl}, \text{rNat1}, t)] ;
\]

\[
\text{pe}(\text{rNat}, \text{i}, \text{rNat1}, t) = \text{e} = \text{sum}[\text{tl}_{\text{i}}(\text{tl}, i), \text{p}_{\text{gwtl}}(\text{rNat}, \text{tl}, \text{rNat1}, t) \times \text{ptl}_{\text{tl}}(\text{rNat}, \text{tl}, \text{rNat1}, t) \times \text{pe}(\text{rNat}, i, \text{rNat1}, t)]^* \text{p}_{\text{omegawl}}(\text{rNat}, i) ;
\]

Where \(\text{gw}\) is the share parameter in the second level CET nest.

114
In the original layout, the export price pe is implicitly defined by the equation pe_{eq} which defines xw from total export supply. To keep that equation untouched, it is replaced here by a variant which is used if no tariff line equation is given. Beside the related s condition, it is identical to the equation in the standard model:

\[
pe_{eq} = \frac{\sum_{tl} x_{wl}(i,t,l) \cdot p_{wtl}(i,t,l)}{\sum_{tl} x_{wl}(i,t,l) + \sum_{tl} x_{wtl}(i,t,l)}
\]

The bi-lateral export supply at commodity level xws is defined identically, however neglects the case of small import shares or infinite transformation:

\[
xws(i,t,l) = \frac{\sum_{tl} x_{wl}(i,t,l) \cdot p_{wtl}(i,t,l)}{\sum_{tl} x_{wl}(i,t,l)}
\]

The demand side comprises similar equations, first to define bi-lateral import demand at tariff line level $xwtl$ (which by definition is equal to export supply):

\[
xwtl(i,t,l) = \frac{\sum_{tl} x_{wl}(i,t,l) \cdot p_{wtl}(i,t,l)}{\sum_{tl} x_{wl}(i,t,l)}
\]

The macro m_{pmciTl} define the cif price, to which tariff line specific tariff $imptxTL$ are added as well as potentially a general shifter for import taxation of product i. Note that $imptxTL$ is defined as a variable to render it endogenous under a TRQ. The macro is based itself on a macro to define the f.o.b. price:

\[
mc_pmciTl(r,t,l) = \frac{pm_{fob}(r,t,l) + imptxTL(r,t,l)}{1 + \text{margin}(r,t,l)}
\]

Both macros are identically structured as the macros in the standard model. Note that export taxes are currently not differentiated at tariff line level and that the trade margins are also assumed to be identical for all tariff lines belonging to the same commodity.

The average bi-lateral import price pm for a commodity i, normally substituted out in the standard model with the m_{pmci} macro, is in here explicitly defined as an aggregation over the tariff-line prices:

\[
\text{Related dual CES price aggregator (average bi-lateral import price)}
\]

\[
pm(i,t,l) = \frac{\sum_{tl} x_{wl}(i,t,l) \cdot p_{wtl}(i,t,l)}{\sum_{tl} x_{wl}(i,t,l) + \sum_{tl} x_{wtl}(i,t,l)}
\]
To keep the standard model simple, the modified xw equation e_{xwMod} which distinguishes between the case of dis-aggregation to tariff line or not is only comprised in the sub-module model:

```plaintext
* --- bilateral import demand at commodity level, note that the CEQbox default equation
* is the first block (not tariff line information) and uses pmci% plus tariffs,
* whereas the second block (tariff line information) uses the pm variable defined by the dual
* price aggregator above
* e_xwMod(rNat,i,rNat,t,c) $ (xwFlag(rNat,i,rNat) $ rComb(rNat1,rNat) $ (not iMt0(i))) ..
* xw(rNat,i,rNat,t)/xw.scale(rNat1,i,rNat,t) == aw(rNat,i,rNat,t)*xmt(rNat1,i,rNat,t)/xw.scale(rNat1,i,rNat,t)
*
* e_xwMod(rNat,i,rNat,t,c) $ (xwFlag(rNat,i,rNat) $ rComb(rNat1,rNat) $ (not iMt0(i))) ..
* e_xwMod(rNat,i,rNat,t,c) $ (xwFlag(rNat,i,rNat) $ rComb(rNat1,rNat) $ (not iMt0(i))) ..
* e_xwMod(rNat,i,rNat,t,c) $ (xwFlag(rNat,i,rNat) $ rComb(rNat1,rNat) $ (not iMt0(i))) ..
```

Finally, there is an equation for the TRQ mechanism:

```plaintext
* --- TRQ bound equation, paired with tariff
* e_trq(rNat,t1,rNat,t) $ (p_trq(rNat,t1,rNat,t) $ rComb(rNat1,rNat)) ..
* p_trq(rNat,t1,rNat,t) =E= xwt1(rNat,t1,rNat,t);
```

The TRQ equation clearly requires that the related tariff at tariff line level imptxTL is endogenous and not fixed. With a MCP solver, bounds on that tariff variable model can depict the regime switch from under-filled quota (= tariff at lower bound) to binding quota (= tariff between lower and upper bound, the tariff variable is equal to the per unit quota rent plus the in-quota tariff) and over-quota imports (= tariff at upper bound). Note that introducing TRQs with a CNS solver will only work for the cases where the quota is binding in the benchmark and the simulation, i.e. the implicit tariff is between its lower and upper bounds in the final solution.

3.6.5 Entering the data

The user provided data are stored in files in the directory “gams\scen\TariffLine”. A trial implementation to model EU-CAN exports at tariff line level can be found there as “ceta.gms”. It fits any database with at least EU28, USA and ROW as labels for regions and “mil” and “wht” as commodities.

Note that the information provided by such a file to module needs to be broken up in two blocks:

1. The **declarations**, i.e. the set of considered tariff lines and how they are mapped to the GTAP commodities in the current aggregation:

   ```plaintext
   $iftheni.decl "$1"="decl"
   set rNat "Tariff line active in model" / cheese, butter, SMP, WMP, OthDairy,
   baking_wht, feed_wht /;
   set rNat1 "Link between tariff lines and GTAP commodities" / cheese, butter, SMP, WMP, OthDairy . mil-c
   (baking_wht, feed_wht). wht-c /;
   ```
Note that the set of tariff lines \(t_l \) and there link to the commodity \(t_l_i \) must be defined in block in a $ifthen$-else-endif structure as shown above.

2. The actual data and parameter to use

\[
\text{Note that the data above are invented and the tariff randomly drawn to provide a test framework for the module. The data to use need to be stored in "gams\scen\tariffline" and can from there selected via the GUI (see below).}
\]

3.6.6 Calibration

The bi-lateral trade flow and protection data are scaled to match the information in the global SAM in the file “gams\tariffLines\tariffLines_cal.gms”

\[
\text{As export subsidies are assumed to be identical across tariff lines, the tariff line price at the benchmark is equal to the average export price:}
\]

\[
\text{Such that the share parameters can be derived directly from the quantities:}
\]
That is not the case for the importer side where tariff differentiation is assumed at tariff line level:

\[
p_{\text{amwtl}}(\text{Nat},l,\text{rNat},t0) \propto \text{wxtl.l(}\text{rNat},l,\text{rNat},t0) = \text{sum}(\text{tl.i(}l,\text{rNat},t0) / \text{xwtl.l(}\text{rnat},l,\text{rNat},t0) \text{)}
\]

\[
\text{p _pmCifTl(}\text{rNat},l,\text{rNat},t0, \text{)} \text{= (} \text{pmCifTl(}\text{rNat},l,\text{rNat},t0, \text{)} / \text{pm.l(}\text{rNat},l,\text{rNat},t0, \text{)} \text{)} \text{= pm.l(}\text{rNat},l,\text{rNat},t0, \text{)} \text{**p _sigmawtl(}\text{rNat},l,\text{)} \text{)} ;
\]

3.6.7 Post model processing

The code comprising the model equations also comprises a section for post-model processing:

The file with the set of considered tariff lines and related data can be chosen on the “Tariff lines” tab:

Note again that a non-default parameter file must be chosen which introduces transformation elasticities. It is not possible to use the model with an infinite transformation elasticity between export destinations.

The file with the set of considered tariff lines and related data can be chosen on the “Tariff lines” tab:
Result exploitation

The results at tariff line level are comprised in the two tables “Exports, trade matrix, Tariff lines” and “Imports, trade matrix, Tariff lines”:

A screen shot of a part of such a table is shown below:

3.6.9 References

3.7 CO2 and Non-CO2 Accounting

The CO2 emission factors are a default part of newer GTAP data base releases, the Non-CO2 emissions need to be downloaded additional from the GTAP website (for free given a matching GTAP data base licence). Both need to be added during data preparation by switching options on the GUI. They provide additional results which can be exploited with the GUI.

The CO2 accounting defined emissions in the model based on the following three equations plus allows to use a MCP-mechanism to render the emission tax endogenous under an emission ceiling.

Note that the code does not use emissions factors as parameters, but the total benchmark emissions related to domestic and import demand by the Armington agents \(\text{emid}0 \) and \(\text{emii}0 \). Emissions are calculated by updating these totals based on the change in import demand \(m_{xm} \) and domestic demand \(m_{xd} \) relative to benchmark demands stored as \(xma0 \) and \(xda0 \).

Non-CO2 accounting is currently only done for reporting purposes. It uses emissions factors and not totals.

3.8 GTAP-E

GTAP-E is entirely based on the flexible nesting approach and is detailed there, see section “Flexible nesting.”

3.9 GTAP-AGR

GTAP-AGR is based on several changes in the GTAP in the standard layout and implemented in CGEBox by using the flexible nesting approach for the production function and the factor supply (see “gams\gtapAgr\gtapAgr-Model.gms”).

For livestock activities \(\text{lstk} \), it introduces a sub-nest under the ND nests which allows for substitution between feedstock \(\text{feed} \):

```gams
if ( card(feed),
    tNest("feed") = yes;
    tNest_i_a("feed",feed,lstk) = yes;
    tNest_n_a("ND","feed",lstk) = YES;
);
```

The two sets are defined in “gams\gtapAgr\gtapAgr_def.gms”: 120
Intermediate demand substitution is also introduced in the food processing industries:

```gams
set foodProc(i0) / cmt,cmt,vol,mil,pcr,sgr,ofd,b_s /
set foodProc(a) / foodProc(a) $ sum(mapl(foodProc,a),1) = YES;

if ( card(agr_c),
    tNest("foodProc") = yes;
    tNest_i_a("foodProc",agr_c,foodProc) = yes;
    tNest_n_a("ND","foodProc",foodProc) = YES;
);
```

Factor supply to mobile factors is differentiated between agricultural and non-agricultural activities:

```gams
if ( card(agr),
    fNest("agr") = YES;
    fNest_a_f("agr",agr,ffNest) = YES;
    fNest_n_f("xtf","agr",ffNest) = YES;
    omegaNest(r,"agr",ffNest) = omegaNest[r,ffNest];
    fNest("nonAgr") = YES;
    fNest_a_f("nonAgr",nonAgr,ffNest) = YES;
    fNest_n_f("xtf","nonAgr",ffNest) = YES;
    omegaNest[r,"nonAgr",ffNest] = omegaNest[r,ffNest];
);
```

Note that the set ffNest will cover all mobile factors with the exemption of land if the GTAP-AEZ module is active.

The parameterization is based on parameters by Keeney and Hertel, details do not matter here, the code in “gams\gtapAgr\gtapAgr_def.gms” should be rather self-explanatory.
3.10 G-RDEM: Long-term baseline generation and analysis

This section is prepared by Roberto and Wolfgang Britz, drawing on: G-RDEM: A GTAP-Based Recursive Dynamic CGE model for Long Term Baseline Generation and Analysis, in: Bocconi Working Paper Series No. 105, April 2018.

3.10.1 Summary

The G-RDEM module allows to user to construct long-run baselines drawing on the so-called Socio-Economic Pathways (SSPs9 developed for the International Panel on Climate Change (IPCC), adding model mechanisms important for the long-term. These baselines can be subsequently used for counterfactual analysis. The necessary data for the SSPs are distributed with the model code and need not to be supplied by the user. The different mechanisms to include in the model as well as the period to cover and the time resolution can be steered via the interface.

3.10.2 Background and introduction

Due to issues such as climate change and depletion of global resources, there is an increasing demand for long-term quantitative analyses. Computable General Equilibrium models can contribute in that direction as they consistently consider the manifold interrelations occurring in the economy, while providing the often needed sectoral detail. They therefore complement approaches working at the more aggregate level (e.g. Dellink et al. 2017) or focusing in detail on specific sectors (e.g. Alexandratos and Bruinsma 2012). On the other hand, it should be noted that CGE models were not originally designed to this purpose, but rather for short-term policy assessment, like simulating the effects of a fiscal reform, or the implementation of a trade agreement. Accordingly, most parameters are usually “calibrated” to a relatively recent Social Accounting Matrix or Input Output Table, such that the observed structure of an economic system is taken as a benchmark, from which counterfactual experiments are conducted.

Of course, when the economy is analysed at a horizon of 20, 30 years, or even more, the economic structure as emerging from some past national accounts, which may refer to five years back, is no more a valid starting point. One should consider trends in structural adjustment, driven by changing preferences, demographic composition, new technologies, variations in the endowments of primary resources (including human capital), etc. The whole issue is not about forecasting: nobody actually knows which “breakthrough” technologies could emerge, or which unexpected phenomena could shape the economic structure in the future. What we do know from past observation is that a number of “slow” adjustment processes are active and therefore they should be taken into account in the generation of a credible and internally consistent future baseline.

The study of time evolution of the economic structure (“structural change”) is a rather active research field in theoretical and applied economics (Matsuyama, 2008). Most of the studies in the literature, however, look at the past. Typical research questions are: the contribution of the changing industrial mix to aggregate productivity (e.g., Duarte and Restuccia 2010); the declining share of the agricultural sector in developing economies (e.g., Üngör 2013), etc., where some specific transition processes are identified. Here, rather than studying the past, we aim at drawing from some empirical findings and methodologies in this literature to infer, inside a CGE modelling framework, a possible future evolution of the economy.

To this end, a number of “unconventional” features have to be introduced into the standard CGE formulation, to create a model specifically designed for the generation and assessment of long-term economic scenarios. We present therefore in here a newly develop CGE model of this kind, termed G-
RDEM (GTAP based Recursive Dynamic Economic Model). This model considers drivers of long run structural change, which we regard as especially relevant, namely: (1) non-linear Engel curves in household consumption, (2) productivity growth differentiated by sector, (3) debt accumulation from foreign savings and trade imbalances, (4) aggregate saving rates linked to population and income dynamics, and (5) time-varying and income dependent industrial cost shares.

G-RDEM extends the flexible and modular CGE modelling platform CGEBox (Britz and Van der Mensbrugghe 2016), from which it inherits some important features. Firstly, the code is open source, to ensure transparency and invite the community of modellers to use the tool and contribute to its further development. Secondly, it maintains full flexibility in sectoral and regional aggregation. Thirdly, G-RDEM as a seamless integrated module in CGEBox offers the possibility to combine it with other modules such as CO2 and Non-CO2 emissions, GTAP-Water, GTAP-AEZ etc.. All new features are based on econometrically estimated parameters, thereby making the implementation fully documented and transparent. G-RDEM is encoded in the GAMS modelling language and, as a module of CGEBox, shares its graphical user interface.

3.10.3 Overview

The construction of a long-term baseline in CGE models typically draws on population and GDP projections from other studies. Indeed, a recursive dynamic CGE only considers capital accumulation as an endogenous mechanism driving growth, while productivity changes and other drivers of structural change are usually kept exogenous. In order to let a CGE model replicate a given growth path, a total factor productivity shifter is endogenously determined during the construction of the reference baseline, by fixing GDP at each time period. In subsequent model runs and counterfactual simulations, productivity parameters are then maintained at those estimated levels, while national income is endogenously computed.

This simple methodology aligns the output of the CGE model to a pre-determined aggregate growth path, but of course does not capture some fundamental structural changes which may take place in the economy, i.e. in the composition of output and demand. Instead, we aim in here to address the key elements driving such compositional change (Figure 6).

To this end, we introduce an AIDADS demand system to consider how budget shares in household consumption adjust to the changing levels of per capita income, to capture “non-linear Engel curves”, which are a salient feature of economic development. Secondly, the economy wide total factor productivity (TFP) shifter, aligning the model to the target GDP in any period, is here differentiated by sector. These two features are introduced through specific equations directly into the CGE framework itself (red boxes in Figure 1). Other elements are activated in between the solution points (blue boxes). Therefore, the intra-periodal equilibrium computed by the model, in combination with exogenous projections from the current period t, updates some parameters for the following period $t+1$. The labour force (by skill category) is adjusted to population and work force projections. Next year’s capital stocks reflect last year’s ending stocks and gross investments. International capital transfers reflect past foreign savings. Saving rates adjust to population and GDP growth, and I-O coefficients (factor shares in production processes) are updated on the basis of national income.
The process thus requires some exogenous projections for GDP and population. G-RDEM offers the possibility to draw on a set of projections for the so-called SSPs (Shared Socio Economic Pathways) (Riahi et al. 2016), available online from the IIASA Shared Socio Economic Pathways Database. These SSPs were developed in the context of the IPCC scientific assessment on Climate Change. For each of these five SSPs, a single population and urbanization scenario, jointly developed by IIASA and NCAR (National Center for Atmospheric Research), can be combined with GDP projections from either the OECD or IIASA. These GDP and population projections are available in 5-year steps up to 2100, at a single country basis. They are aggregated in G-RDEM to the desired regional aggregation level and interpolated to yield yearly time series. They can also be complemented by Climate Change impacts on yields for a set of RCPs (Representative Concentration Pathways) and various combinations of GCMs (Global Circulation Models) and global gridded growth models provided by the AgCLIM50 project (van Meijl et al. 2017).

A user might also add its own scenario assumptions during the construction of the baseline, such as about trade policies or alternative GDP projections. After the definition of the baseline, the software saves the resulting productivity shifters and other variables, which can subsequently be loaded as exogenous parameters for counterfactual analysis. The set of results from the baseline can also be directly employed, to get a much disaggregated definition of the economic scenario.

3.10.4 An AIDADS demand system with detail for food consumption

Background

It is universally acknowledged that the relationship between consumption level and income (also known as Engel curve) can be complex and non-linear. Yet, many CGE models still adopt demand systems such as Cobb-Douglas (CD) or Linear Expenditure System (LES), having linear Engel curves. Those simplifying assumptions make the model easier to handle, but are defendable only if the model is used for simulations involving limited changes in income levels. Of course, this is not the case for long-term analyses. Keeping constant marginal budget shares would lead to an overestimation of the demand for necessities, such as food, while demand in other sectors will hence be underestimated. The

consequences are implausible long-run structural changes in production, demand, and trade patterns. Some models employed for long-term analysis therefore use different demand systems and/or re-parameterize along the dynamic path. For instance, MAGNET (Woltjer et al. 2014, p. 84) incorporates a module for re-calibrating the parameters of a CDE (Constant Differences in Elasticity) demand system to given income elasticities. Nonetheless, the authors admit: “All of these parameters and functional forms are very much ad hoc, and should be improved.”.

Following Roson and van der Mensbrughe 2018, we rather implement an empirically estimated AIDADS demand system into the G-RDEM model, for broad product groups. The AIDADS is An Implicit, Directly Additive Demand System (Rimmer and Powell 1996). It can be understood as a generalization of a LES demand system, where marginal budget shares are not fixed, but are a linear combination of two vectors, depicting the marginal budget structure at very low and very high utility (income) levels. Given that the marginal budget shares in the two vectors fulfil the adding up condition to unity, any linear combination of the two vectors also leads to regular budget shares. In order to improve the detail inside the agri-food sector, we also took econometric estimates of income dependent marginal expenditure shares for food categories from Muhammad et al. 2011, and incorporate them in the AIDADS framework.

Cranfield et al. 2000 improve on the original Rimmer and Powell 1996 approach, by developing an estimation method that does not rely on an approximation of utility. We follow their notation in the following. The demand system is defined below. Equation (1) determines the Marshallian demand, which is similar to that of a LES. Here, however, the marginal budget shares δ_i are endogenous variables, defined by (2), expressed as a linear combination of two vectors α and β, function of the utility level u, implicitly defined by (3).

$$x_i = \gamma_i + \delta_i \left(Y - \sum_j \gamma_j p_j \right)$$ \hspace{1cm} (1)

$$\delta_i = \frac{\alpha_i + \beta_i u}{1 + u}$$ \hspace{1cm} (2)

$$\ln(u) = \sum_i \delta_i \ln \left(x_i - \gamma_i \right) + \kappa$$ \hspace{1cm} (3)

Estimation and integration into modelling framework

We first econometrically estimated α, β, γ und u using data from the International Comparison Program ICP 2015, for ten broader expenditure categories (food, beverages and tobacco, clothing, housing, furniture, transportation, recreation, communication, health, education) plus details for food expenditures. The integration in the CGE model requires mapping the parameter estimates to the commodity resolution of the model.

The demand system is calibrated against the benchmark data of regional household consumption, from the GTAP v.9 data set. To this purpose, we regressed the utility levels u from our findings to total per capita consumption expenditure Y in each region. That allows us to estimate (from (2)) the marginal budget shares δ_i in the calibration point. We then discarded the previously estimated γ and instead solve (1) for γ at given x, Y, p and the calibrated marginal budget shares. In the case that this implies a
negative γ, we use a penalty minimization approach, which minimizes the difference between the estimated α, β and the “corrected” ones, such that all γ turn out to be positive.

Technical implementation of the AIDADS demand system

Equations

Due to its resemblance with the LES system, which was already available in CGEBox, the code is a direct extension of the existing code both for the calibration to the benchmark and implementation of the demand system in the model’s equation (see model_cal_les.gms and model_dem_les.gms).

The demand equations for both systems are indeed identical:

```
* --- demand equations
*  x[LES](r,i,h) $eq(xFlag(r,i,h) $ alphaLES.i.l(r,i,h,t));
  xa[r,i,h,t] / xa.scale(r,i,h,t,
  =e=  (gammaLES(r,i,h,t)*pop(r,h,t) + alphaLES(r,i,h,t)/m_pa(r,i,h,t) * yCNonCom(r,h,t))/xa.scale[r,i,h,t];
```

The demand is equal to a constant term $gammaLES$ per head multiplied with population in the household type h (which might be just one) plus the marginal budget share $alphaLES$ times the non-committed income $yCNonCom$, divided by the Armington price index for the private household aggregate, defined in the macro m_pa.

The non-committed income $yNonCom$ is the difference between the given expenditures for final consumption yc and the value of the commitments, i.e. the constant terms multiplied with the Armington price:

```
* --- non committed income: total expenditure for private consumption minus value of commitments
*  yCNonCom[r,i,h,t] $sum(i *** xFlag(r,i,h) $ alphaLES.i.l(r,i,h,t));
  yNonCom[r,h,t] / yCNonCom[r,h,t] =E=  (yc(r,h,t) - sum(i $ *** xFlag(r,i,h) $ alphaLES.i.l(r,i,h,t)) * gammaLES[r,i,h,t]*pop(r,h,t) / m_pa(r,i,h,t));
  =E=  sum(dNest_r_fd(“top”,dNest_h), gammaLES[r,dNest_h,t]*pop(r,h,t) / yNonCom(r,dNest_h,t))/yCNonCom[r,h,t];
```

Note that we allow for demand nests $dNest$ which are CES aggregates of other such nests or individual commodity demands.

In the case of AIDADS, the marginal budget shares $alphaALES$ are not fixed (as in the LES), but a function of utility uh:

```
* --- AIDADS: marginal budget shares are a function of utility
*  alphaAIDADS[r,i,h,t] $eq(xFlag(r,i,h,t) $ [alphaAIDADS.l(r,i,h,t) + betaAIDADS.i.l(r,i,h,t)) $ [p_demSystem eq AIDADS]);
  alphaALES[r,i,h,t] =e=  [ alphaAIDADS[r,i,h,t] + betaAIDADS[r,i,h,t] * (uh(r,h,t)*p_uh0[r,h]) ] / [ 1 + uh(r,h,t)*p_uh0[r,h] ];
```

The two vectors $alphaAIDADS$ and $betaAIDADS$ are the limiting cases for the marginal budget shares at very low and very high utility levels. The utility of the (representative) private household is set to unity in the benchmark. In order to line up with the empirical implementation (see next section), the parameter p_uh0 is introduced. Cardinal utility is thus defined as follows:
where \(p_{uh1} \) is an additional parameter in the demand system (corresponding to the parameter \(A \) in Cranfield et al. 2000, see their equation (10)). Note the equivalence of the utility definition to the one in the LES system: only consumption quantities exceeding the commitments \(gammaLES \) generate utility.

We also estimate the elasticity of private expenditure with regard to private utility:

```
* population weighted 1/(du/dm) from indirect utility function

* and correct for benchmark relation and weight with population

Calibration

The calibration code can be found in “model/cal_les.gms”. The econometrically estimated parameters are inserted as a table in the code:

```
table p_parAIDADS(AIDADS_grps,parAIDADS)
 alpha beta

 Cloth 0.06221 0.03457
 Hous 0.00001 0.20385
 Furn 0.03262 0.04240
 Health 0.00111 0.12775
 TransP 0.03840 0.10364
 Commun 0.01643 0.02226
 Recreat 0.00001 0.09284
 Educ 0.01169 0.04617
 RestHot 0.00490 0.08660
 Other 0.00001 0.16785
 Cere 0.11934 0.00001
 cmt 0.05479 0.00189
 oap 0.07570 0.00911
 fsh 0.05047 0.00228
 rmk 0.01887 0.00159
 mil 0.08725 0.00890
 vol 0.02635 0.00001
 v_f 0.15813 0.00248
 sgr 0.02506 0.00001
 ofd 0.11491 0.03966
 b_t 0.05872 0.02116
```

Integration into a GTAP model with flexible sectoral aggregation requires a mapping from these categories to the current sectors in the model. That is achieved in two steps:

1. The commodity groups from the AIDADS estimation are mapped to the 57 GTAP sectors (non-aggregated):

   AIDADS_to_GTAP("OTHER",idat) $ (not sum(AIDADS_to_GTAP(AIDADS_grps,iidat),i)) = yes;
   set AIDADS_to_i[AIDADS_grps,i] "Link to current sectoral aggregation";
   AIDADS_to_i[AIDADS_grps,i] $ sum(AIDADS_to_GTAP(AIDADS_grps,iidat),mapi(idat,i)) = YES;

   alphaAIDADS(r,i,h,t0) $ xchsr.l(r,i,h,t0)
   = sum(AIDADS_to_i[AIDADS_grps,i], p_parAIDADS(AIDADS_grps,"alpha")*xchsr.l(r,i,h,t0) ) / sum(AIDADS_to_i[AIDADS_grps,i],xchsr.l(r,j,h,t0));

   betaAIDADS(r,i,h,t0) $ xchsr.l(r,i,h,t0)
   = sum(AIDADS_to_i[AIDADS_grps,i], p_parAIDADS(AIDADS_grps,"beta")*xchsr.l(r,i,h,t0) ) / sum(AIDADS_to_i[AIDADS_grps,i],xchsr.l(r,j,h,t0));

Note that the aggregation might define an intersection such that, for some aggregates, the original sectors comprised belong to multiple estimation groups. Using the benchmark consumption shares as weights corrects for that. In order to ensure that both vectors fulfil the adding up condition exactly, the elements of in the vector alphaAIDADS and betaAIDADS are scaled such their sum is equal to unity:

alphaAIDADS.fx(r,i,h,t0) $ xchsr.l(r,i,h,t0) = alphaAIDADS(r,i,h,t0)/sum(j, alphaAIDADS(r,j,h,t0));

betaAIDADS.fx(r,i,h,t0) $ xchsr.l(r,i,h,t0) = betaAIDADS(r,i,h,t0)/sum(j, betaAIDADS(r,j,h,t0));

The cardinal utility level, which drives the marginal budget composition, is an estimated parameter. To this end, Roson and van der Mensbrugghe 2018 regress the estimated utility levels on real GDP per capita. Their regression results are here employed to derive the utility level at the benchmark and thus the marginal budget shares:

\[ p_{uh0}(r,h) \propto p_{perCap}(r,h) \]

\[ \text{option kill=alphaLES.b;}
\]

\[ \text{alphaLes}(r,i,h,t0) \propto \text{flag}(r,i,h) \]

\[ = \{\text{alphaAIDADS}(r,i,h,t0)*p_{uh0}(r,h)/[1+p_{uh0}(r,h)] \}; \]

The obtained marginal budget shares alphaLES at benchmark income and prices are then used to define the commitment terms. The code is not shown here as it was already comprised in CGEBox code and it is illustrated in the associated documentation.

Whenever that calibration procedure becomes infeasible, some deviations from the given alphas and betas are allowed:
In that case, squared relative differences between the corrected and a priori marginal budget shares enter the objective function:

\[
e_{\text{fitLes}} \ldots
\]

\[
= \text{sum} \left( \{ \text{rs}(r,i,h,t0) \} \times \text{xaFlag}(r,i,h,1) \right)
\]

\[
= \text{sum} \left( \{ \text{rs}(r,i,h,t0) \} \times \text{xaFlag}(r,i,h) \right)
+ \text{sqrt} \left( \text{pElas}(r,i,h,t0) - \text{pElas}(r,i,h,0) \right)^{0.01}
+ \text{sqrt} \left( \text{inElas}(r,i,h,t0) - \text{inElas}(r,i,h,0) \right)
\]

\[
= \text{sum} \left( \{ \text{rs}(r,i,h,t0) \} \times \text{xaFlag}(r,i,h), \text{sqrt} \left( \text{v_scaleAlpha}(r,i,h) - 1 \right) \right) \times \text{p_demSystem} \text{ eq AIDADS}
\]

Where \( v_{\text{scaleAlpha}} \) enters the definition of \( \alpha_{\text{LES}} \) and \( \beta_{\text{LES}} \):

\[
e_{\alpha_{\text{AIDADS}}}(r,i,h,t0) \times \text{alphaAIDADS}(r,i,h,0) + \text{betaAIDADS}(r,i,h,0) \times \text{p_demSystem} \text{ eq AIDADS}
\]

\[
= \left[ \text{alphaAIDADS}(r,i,h,t0) \times \text{v_scaleAlpha}(r,i,h)
+ \text{betaAIDADS}(r,i,h,t0) \times \text{v_scaleAlpha}(r,i,h)
\right] / \left[ 1 + \text{uh}(r,h,t0) \times \text{p_uh0}(r,h) \right]
\]

Such as:

\[
\text{--- marginal budget shares must add to unity}
\]

\[
e_{\text{sumAlpha}}(r,i,h,t0) \times \left( \text{p_demSystem eq AIDADS} \right) \times \text{sum}(i, \text{xaFlag}(r,i,h)) \ldots
\]

\[
= \text{sum}(i \times \text{xaFlag}(r,i,h), \text{alphaAIDADS}(r,i,h,t0) \times \text{v_scaleAlpha}(r,i,h)) = 1
\]

\[
e_{\text{sumBeta}}(r,i,h,t0) \times \left( \text{p_demSystem eq AIDADS} \right) \times \text{sum}(i \times \text{xaFlag}(r,i,h)) \ldots
\]

\[
= \text{sum}(i \times \text{xaFlag}(r,i,h), \text{betaAIDADS}(r,i,h,t0) \times \text{v_scaleAlpha}(r,i,h)) = 1
\]

Finally, a multiplier \( p_{\text{uh}} \) (termed \( A \) in Cranfield et al. 2000, eq 10) is calculated:

\[
\text{\$if thei.AIDADS = "kdemSystem" = AIDADS}
\]

\[
\text{\$endif AIDADS}
\]

The code allows introducing aggregates of individual commodities under which CES-sub-nests can be defined, which comprise these individual commodities.

**Table 8: Mapping between AIDADS categories and GTAP sectors**

<table>
<thead>
<tr>
<th>AIDADS category</th>
<th>GTAP sector</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>pdr</td>
<td>Paddy Rice: rice, husked and unhusked</td>
</tr>
<tr>
<td></td>
<td>wht</td>
<td>Wheat: wheat and meslin</td>
</tr>
<tr>
<td></td>
<td>gro</td>
<td>Other Grains: maize (corn), barley, rye, oats, other cereals</td>
</tr>
<tr>
<td></td>
<td>pcr</td>
<td>Processed Rice: rice, semi- or wholly milled</td>
</tr>
<tr>
<td>Ruminant meat</td>
<td>Ctl</td>
<td>Cattle: cattle, sheep, goats, horses, asses, mules, and hinnies; and semen thereof</td>
</tr>
<tr>
<td>AIDADS category</td>
<td>GTAP sector</td>
<td>Detailed description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>cmt</td>
<td>Cattle Meat: fresh or chilled meat and edible offal of cattle, sheep, goats, horses, asses, mules, and hinnies. raw fats or grease from any animal or bird</td>
<td></td>
</tr>
<tr>
<td>Oap</td>
<td>Other Animal Products: swine, poultry and other live animals; eggs, in shell (fresh or cooked), natural honey, snails (fresh or preserved) except sea snails; frogs' legs, edible products of animal origin n.e.c., hides, skins and furskins, raw, insect waxes and spermaceti, whether or not refined or coloured</td>
<td></td>
</tr>
<tr>
<td>omt</td>
<td>Other Meat: pig meat and offal. preserves and preparations of meat, meat offal or blood, flours, meals and pellets of meat or inedible meat offal; greaves</td>
<td></td>
</tr>
<tr>
<td>fsh</td>
<td>Fishing: hunting, trapping and game propagation including related service activities, fishing, fish farms; service activities incidental to fishing</td>
<td></td>
</tr>
<tr>
<td>mil</td>
<td>Milk: dairy products</td>
<td></td>
</tr>
<tr>
<td>rmk</td>
<td>Raw milk</td>
<td></td>
</tr>
<tr>
<td>Osd</td>
<td>Oil Seeds: oil seeds and oleaginous fruit; soy beans, copra</td>
<td></td>
</tr>
<tr>
<td>vol</td>
<td>Vegetable Oils: crude and refined oils of soya-bean, maize (corn), olive, sesame, ground-nut, olive, sunflower-seed, safflower, cotton-seed, rape, colza and canola, mustard, coconut palm, palm kernel, castor, tung jojoba, babassu and linseed, perhaps partly or wholly hydrogenated, inter-esterified, re-esterified or elaidinised. Also margarine and similar preparations, animal or vegetable waxes, fats and oils and their fractions, cotton linters, oil-cake and other solid residues resulting from the extraction of vegetable fats or oils; flours and meals of oil seeds or oleaginous fruits, except those of mustard; degras and other residues resulting from the treatment of fatty substances or animal or vegetable waxes.</td>
<td></td>
</tr>
<tr>
<td>v_f</td>
<td>Veg &amp; Fruit: vegetables, fruit vegetables, fruit and nuts, potatoes, cassava, truffles</td>
<td></td>
</tr>
<tr>
<td>ocr</td>
<td>Other Crops: live plants; cut flowers and flower buds; flower seeds and fruit seeds; vegetable seeds, beverage and spice crops, unmanufactured tobacco, cereal straw and husks, unprepared, whether or not chopped, ground, pressed or in the form of pellets; swedes, mangolds, fodder roots, hay, lucerne (alfalfa), clover, saffoin, forage kale, lupines, vetches and similar forage products, whether or not in the form of pellets, plants and parts of plants used primarily in perfumery, in pharmacy, or for insecticidal, fungicidal or similar purposes, sugar beet seed and seeds of forage plants, other raw vegetable materials</td>
<td></td>
</tr>
<tr>
<td>c_b</td>
<td>Cane &amp; Beet: sugar cane and sugar beet</td>
<td></td>
</tr>
<tr>
<td>ofd</td>
<td>Other Food: prepared and preserved fish or vegetables, fruit juices and vegetable juices, prepared and preserved fruit and nuts, all cereal flours, groats, meal and pellets of wheat, cereal groats, meal and pellets n.e.c., other cereal grain products (including corn flakes), other vegetable flours and meals, mixes and doughs for the preparation of bakers' wares, starches and starch products; sugars and sugar syrups n.e.c., preparations used in animal feeding, bakery products, cocoa, chocolate and sugar confectionery, macaroni, noodles, couscous and similar farinaceous products, food products n.e.c.</td>
<td></td>
</tr>
<tr>
<td>sgr</td>
<td>Sugar</td>
<td></td>
</tr>
<tr>
<td>b_t</td>
<td>Beverages and Tobacco products</td>
<td></td>
</tr>
<tr>
<td>tex</td>
<td>Textiles: textiles and man-made fibres</td>
<td></td>
</tr>
<tr>
<td>wap</td>
<td>Wearing Apparel: Clothing, dressing and dyeing of fur</td>
<td></td>
</tr>
</tbody>
</table>
| lea             | Leather: tanning and dressing of leather; luggage, handbags, saddlery,
<table>
<thead>
<tr>
<th>AIDADS category</th>
<th>GTAP sector</th>
<th>Detailed description</th>
</tr>
</thead>
</table>
|                      |             | **wol**  
Plant Fibres: cotton, flax, hemp, sisal and other raw vegetable materials used in textiles  
Wool: wool, silk, and other raw animal materials used in textile   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |             | **pfb**  
harness and footwear                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Housing              |             | **dwe**  
Dwellings: ownership of dwellings (imputed rents of houses occupied by owners)                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |             | **obs**  
Other Business Services: real estate, renting and business activities                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |             | **wtr**  
Water: collection, purification and distribution                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |             | **gdt**  
Gas Distribution: distribution of gaseous fuels through mains; steam and hot water supply                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |             | **ely**  
Electricity: production, collection and distribution                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |             | **coa**  
Coal: mining and agglomeration of hard coal, lignite and peat                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |             | **oil**  
Oil: extraction of crude petroleum and natural gas (part), service activities incidental to oil and gas extraction excluding surveying (part)  
Gas: extraction of crude petroleum and natural gas (part), service activities incidental to oil and gas extraction excluding surveying (part)  
Insurance: includes pension funding, except compulsory social security |
|                      |             | **gas**  
Isr                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Furniture, Maintenance, appliances | p_c   | Petroleum & Coke: coke oven products, refined petroleum products, processing of nuclear fuel  
Forestry: forestry, logging and related service activities  
Other Mining: mining of metal ores, uranium, gems, other mining and quarrying  
Lumber: wood and products of wood and cork, except furniture; articles of straw and plaiting materials  
Chemical Rubber Products: basic chemicals, other chemical products, rubber and plastics products  
Non-Metallic Minerals: cement, plaster, lime, gravel, concrete  
Iron & Steel: basic production and casting  
Non-Ferrous Metals: production and casting of copper, aluminium, zinc, lead, gold, and silver  
Fabricated Metal Products: Sheet metal products, but not machinery and equipment  
Construction: building houses factories offices and roads  
Electronic Equipment: office, accounting and computing machinery, radio, television and communication equipment and apparatus  
Other Machinery & Equipment: electrical machinery and apparatus n.e.c., medical, precision and optical instruments, watches and clocks  
Other Manufacturing: includes recycling |
|                      |             | **frs**  
Other Mining, appliances                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |             | **omn**  
Other Mining: mining of metal ores, uranium, gems, other mining and quarrying                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |             | **lum**  
Lumber: wood and products of wood and cork, except furniture; articles of straw and plaiting materials                                                                                                                                                                                                                                                                                                                                                                              |
|                      |             | **crp**  
Chemical Rubber Products: basic chemicals, other chemical products, rubber and plastics products                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |             | **nmm**  
Non-Metallic Minerals: cement, plaster, lime, gravel, concrete                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |             | **i_s**  
Iron & Steel: basic production and casting                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |             | **nfm**  
Non-Ferrous Metals: production and casting of copper, aluminium, zinc, lead, gold, and silver                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |             | **fmp**  
Fabricated Metal Products: Sheet metal products, but not machinery and equipment                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |             | **cns**  
Construction: building houses factories offices and roads                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |             | **ele**  
Electronic Equipment: office, accounting and computing machinery, radio, television and communication equipment and apparatus                                                                                                                                                                                                                                                                                                                                                           |
|                      |             | **ome**  
Other Machinery & Equipment: electrical machinery and apparatus n.e.c., medical, precision and optical instruments, watches and clocks                                                                                                                                                                                                                                                                                                                                         |
|                      |             | **omf**  
Other Manufacturing: includes recycling                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |             | **p_c**  
Petroleum & Coke: coke oven products, refined petroleum products, processing of nuclear fuel  
Forestry: forestry, logging and related service activities  
Other Mining: mining of metal ores, uranium, gems, other mining and quarrying  
Lumber: wood and products of wood and cork, except furniture; articles of straw and plaiting materials  
Chemical Rubber Products: basic chemicals, other chemical products, rubber and plastics products  
Non-Metallic Minerals: cement, plaster, lime, gravel, concrete  
Iron & Steel: basic production and casting  
Non-Ferrous Metals: production and casting of copper, aluminium, zinc, lead, gold, and silver  
Fabricated Metal Products: Sheet metal products, but not machinery and equipment  
Construction: building houses factories offices and roads  
Electronic Equipment: office, accounting and computing machinery, radio, television and communication equipment and apparatus  
Other Machinery & Equipment: electrical machinery and apparatus n.e.c., medical, precision and optical instruments, watches and clocks  
Other Manufacturing: includes recycling |
| Transport            |             | **Otp**  
Other Transport: road; rail; pipelines, auxiliary transport activities; travel agencies  
Water transport  
Air transport  
Motor Motor vehicles and parts: cars, lorries, trailers and semi-trailers  
Other Transport Equipment: Manufacture of other transport equipment insurance: includes pension funding, except compulsory social security  
Petroleum & Coke: coke oven products, refined petroleum products, processing of nuclear fuel |
|                      |             | **wtp**  
Water transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |             | **atp**  
Air transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |             | **mvh**  
Motor Motor vehicles and parts: cars, lorries, trailers and semi-trailers  
Other Transport Equipment: Manufacture of other transport equipment insurance: includes pension funding, except compulsory social security  
Petroleum & Coke: coke oven products, refined petroleum products, processing of nuclear fuel |
|                      |             | **otn**  
Other Transport Equipment: Manufacture of other transport equipment insurance: includes pension funding, except compulsory social security  
Petroleum & Coke: coke oven products, refined petroleum products, processing of nuclear fuel |
|                      |             | **Isr**  
Isr                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |             | **p_c**  
Petroleum & Coke: coke oven products, refined petroleum products, processing of nuclear fuel  
Forestry: forestry, logging and related service activities  
Other Mining: mining of metal ores, uranium, gems, other mining and quarrying  
Lumber: wood and products of wood and cork, except furniture; articles of straw and plaiting materials  
Chemical Rubber Products: basic chemicals, other chemical products, rubber and plastics products  
Non-Metallic Minerals: cement, plaster, lime, gravel, concrete  
Iron & Steel: basic production and casting  
Non-Ferrous Metals: production and casting of copper, aluminium, zinc, lead, gold, and silver  
Fabricated Metal Products: Sheet metal products, but not machinery and equipment  
Construction: building houses factories offices and roads  
Electronic Equipment: office, accounting and computing machinery, radio, television and communication equipment and apparatus  
Other Machinery & Equipment: electrical machinery and apparatus n.e.c., medical, precision and optical instruments, watches and clocks  
Other Manufacturing: includes recycling |
| Communication        |             | **cnn**  
Communications: post and telecommunications                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Recreation           |             | **ros**  
Recreation & Other Services: recreational, cultural and sporting activities,
3.10.5 Differentiated productivity growth

**Background and literature review**

Productivity does not vary uniformly among industries and sectors. Harberger 1998 points out that the whole dynamics of economic progress actually resembles the growth process of “mushrooms”, rather than the steady rise of “yeast”. Indeed, differential productivity growth is one key factor of structural change in the economic systems, and probably the most important one (Swiecki 2017). Several implications of different growth rates have been investigated in the literature, e.g.: relevance and empirics of the so-called “Baumol's disease” (Baumol 1986, Triplett and Bosworth 2003, Young 2014); specialization and international trade (McMillan and Rodrik 2011, Caron and Markusen 2014); “premature deindustrialization” (Rodrik 2016).

To introduce differentiated productivity growth in the G-RDEM model, we build on Roson 2018, who estimated trends in labour productivity, using the Groeningen GGDC 10-Sector Database (de Vries et al. 2015). In that study, some trends and country specific dummies for labor productivity (VA/employment) are estimated. Results are subsequently employed in a cluster analysis, where three groups of countries with similar characteristics are identified. Table 9 below shows some of the findings used to obtain parameters for G-RDEM:

<table>
<thead>
<tr>
<th>Cluster</th>
<th>AGR</th>
<th>MAN</th>
<th>SER</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising</td>
<td>6.23</td>
<td>11.43</td>
<td>5.65</td>
<td>8</td>
</tr>
<tr>
<td>Steady</td>
<td>7</td>
<td>7.88</td>
<td>5</td>
<td>5.93</td>
</tr>
<tr>
<td>Lagging</td>
<td>5.17</td>
<td>5.32</td>
<td>2.34</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Source: Roson 2018

The last column in Table 1 (TOT) displays the average (yearly) growth rate in labor productivity in each group. It refers to value added per worker or hour, so it accounts for capital deepening and similar effects. Interestingly, the differences among industries depends on how fast an economy is growing.
Estimation of differentiated productivity growth

In the development of the G-RDEM model we are not concerned about labour productivity in itself, but rather on the relative differences among the three broad sectors of Agriculture, Manufacturing and Services. To this end, a correspondence between the three clusters and the annual GDP growth rates used in the SSPs was established. The distribution of IIASA SSP data (OECD) on GDP was considered, and it was assumed that the average GDP growth in the Lagging group of countries corresponds to the 20% percentile of the SSP distribution, 50% for Steady, 80% for Rising. This means 1.2%, 2.5%, and 4.9%, respectively.

Second, the ratio of each sector productivity rate, relative the slowest growing sector, which is Services, was computed. Third, for each industry a quadratic interpolation between the three multipliers and the references GDP growth rates was undertaken, thereby getting three parameters of a quadratic polynomial relationship between a sectoral productivity shifter (ratio between industry growth rate and the corresponding one in the Services) and GDP annual growth. This gives raise to the functions displayed in Figure 7.

![Shifters as functions of yearly GDP Growth](image)

**Figure 7**: Productivity growth relative to GDP growth

The key finding is that productivity differentials are minimized (although still significant) at a moderate GDP growth of around 2%. For higher or lower rates, we can see that differences amplify, with manufacturing becoming the key sector. Notice that the shifter is a multiplier: if aggregate growth is negative, it will likely become negative for the reference slow sector as well. When the shifter for Manufacturing is high and positive, this means that productivity is decreasing there more than in the rest of the economy. In other words, productivity growth in Manufacturing appears as strongly correlated with the aggregate productivity growth, which suggests the existence of inter-sectoral externalities.

Implementation in G-RDEM is straightforward. Total factor productivity in the Services \( tfp(r) \) becomes endogenous during the construction of the baseline and is kept then fixed during
counterfactual simulations. Total factor productivity for other sectors (indexed by $i$) in region $r$ at time $t+1$ are defined as $\text{tfp}(r) \times Sh(i,r)$, where the latter is determined by equations like:

$$Sh(i,r) = a + b \frac{gdp(r,t + 1) - gdp(r,t)}{gdp(r,t)} + c \left( \frac{gdp(r,t + 1) - gdp(r,t)}{gdp(r,t)} \right)^2$$  \hspace{1cm} (4)$$

Here are the estimated values for the three parameters $a$, $b$ and $c$:

<table>
<thead>
<tr>
<th></th>
<th>AGR</th>
<th>MAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a$</td>
<td>0.925391</td>
<td>2.893917</td>
</tr>
<tr>
<td>$b$</td>
<td>11.99205</td>
<td>-94.8599</td>
</tr>
<tr>
<td>$c$</td>
<td>291.8147</td>
<td>1680.554</td>
</tr>
</tbody>
</table>

**Table 10: Estimated parameter for sector specific productivity growth**

**Implementation of the sector specific productivity shifters**

The production shifter equation derives from the economy wide, regional specific tfp shifter $\text{axpNat}$ sector specific shifters $\lambda_{Va}$ based on the quadratic function as detailed above (see model.gms):

The parameters are derived from estimates in “GTAPRDEM\diffProdGrowth.gms”:

Which requires a mapping from the original GTAP sectors $iOri$ to the currently active sector aggregation defined in the same program, of which here only an extracted part is shown:
Note that using the factor productivity shift also for land can lead to highly implausible changes in crop yields. We therefore introduce an additional equations which downward corrects the land productivity:

\[
\text{lprod} = \frac{1}{1 + (1.5 - 1) \times 0.5} = \frac{1}{1 + 0.25} = 0.8
\]

### 3.10.6 Endogenous saving rates

**Background and literature review**

We aim at developing a simple but robust mechanism to render aggregate saving rates in G-RDEM endogenous. One strand of literature, relying on cross-country differences of saving rates (e.g. Kisanova and Sefton 2007), works with micro-economic survey data. It explicitly accounts for factors such as demography, welfare state, retirement behaviour, borrowing constraints, income distribution over a lifetime and its uncertainty, as well as capital gains. The focus here is on the life-cycle hypothesis, which considers the change in available income over a lifetime. While these papers give robust evidence that the factors indeed explain the saving behaviour of individuals or households, they typically offer results only for one or a smaller group of countries.

Rather, we draw here on studies which employ cross-sectional analyses over countries to evaluate the factors affecting the economy-wide aggregate saving rates. Most of these works also take the lifecycle hypotheses into account (although indirectly) and find that even in cross-country analyses larger proportions of the young and the elderly compared to persons in working age (dependency ratios) generally decrease the saving rate (Doshi 1994, Masson et al. 1998, Laoayza et al. 2000).

**Estimation**

Instead of directly using parameter values from the literature, we carry out our own cross-section estimation, using GTAP 9 and other data used in our modelling framework, to overcome any potential divergence in definitions, measurement units etc.. The reader might note that we face a potential endogeneity issue: higher rates of GDP growth require increased capital accumulation, thus larger net investments and consequently higher saving rates. The saving rate and GDP growth are hence structurally dependent. However, this is not an issue of major concern in this context, since we are not integrating the estimated equation into the model, but only updating saving rates, given GDP projections. Hence, our aim is solely to ensure that correlation, not causation, is properly accounted
for. Notice also that we obtained our estimates from a sectional data base, which would make it impossible the introduction of lagged variables as instruments.

The distribution of the national aggregate saving shares in the GTAP 9 data set reveals a large spread, as shown in the Figure 8. We regressed those saving rates with OLS against the following explanatory variables:

1. Population composition by age group from the IIASA repository for 2010 (Lutz et al. 2017)
2. GDP growth per capita from 2010 to 2011, in PPPs, from the OECD Env. Growth Model data base as found in the IIASA repository
3. Foreign savings (trade balance) relative to regional income, from the GTAP 9 data base
4. We also tested, as a potential explanatory variable, the share of government consumption on regional income, but did not find a statistically significant relation.

![Figure 8: Distribution of aggregated savings rates in GTAP 9](image)

We found a very good fit for our sectional analysis, with a $R^2$ at 92% and all variables (with the exemption of the young dependency rate) statistically significant at <0.1%. The young DR is nonetheless significant at the 5% level. All variables have the expected sign: dependency ratios decrease the saving rates, as postulated by the life cycle hypothesis, while a higher income per capita and a higher growth rate increase the saving rate. A positive trade surplus (i.e. negative foreign savings) also tends to increase the saving rates.

Table 11: Regression output for saving rate estimation

136
The good fit of the regression stems to a large degree from the inclusion of foreign savings relative to regional income, i.e. a trade surplus indicator, (see Table 4 below), while the contributions of the dependency ratios and GDP per Cap are in a similar range, with GDP growth trailing.

Some scatter plots (visualizing the ANOVA results above) between the explanatory variables and the saving rate are shown below in Figure 9.
The high contribution of the relation between foreign savings and regional income is not astonishing, because it controls for cases such as oil exporting countries (high saving rates) as well as some other countries, often developing ones, with very low saving rates. The foreign saving indicators can be hence rather understood as a control variable for country specific unobserved features (large receiver of development aid in a group a country with otherwise similar macro-economic indicators, rich oil and gas reserves, tax havens …). Accordingly, we do not use changes in the foreign savings during the process of baseline construction, to update the saving rates.

Note that the fitted values cannot be used as such, since we would then neglect any unexplained additional factors, which could imply large changes in the saving rates from the benchmark to subsequent simulation periods in some countries. Thus, we use relative changes in the estimates – neglecting foreign saving – to update the saving rates used in the model.

**Implementation of the endogenous saving rates**

The GAMS code does not use the estimated intercept, but rather updates over the simulation horizon the “betas” for the individual countries in terms of the difference between two consecutive time periods.
Note that using dependency ratios restricts the application to simulation exercises where a projection of the population by age group is available. Given that the IIASA repository features these projections for SSP1-SSP5, we suggest to use one of these SSPs population scenarios directly, or at least the projected age composition.

The parameter \( p_{\text{betaTrack}} \) gives the estimated saving rates at a zero trade balance which is by definition is average in any simulation. It is calculated for \( t-1 \) and \( t-2 \), and its relative change measured against the current saving rate or the simulated is used to update the saving rates in the model:

\[
\text{betas.1}(r\text{Nat},t\text{Sim}) = \text{betas.1}(r\text{Nat},t\text{Sim}) \times \left(1 + \text{sign}(\text{betas.1}(r\text{Nat},t\text{Sim})) \times (p_{\text{betaTrack}}[r\text{Nat},t\text{Sim},"full"] - p_{\text{betaTrack}}[r\text{Nat},t\text{Sim}-1,"full"])/\max(\text{abs}(\text{betas.1}(r\text{Nat},t\text{Sim})),\text{abs}(p_{\text{betaTrack}}[r\text{Nat},t\text{Sim}-1,"full"]))\right);
\]

In order to maintain consistency, in the top-level expenditure distribution system of the regional household, the expenditure shares of savings, private and government consumption are scaled to unity:

\[
p_{\text{betaTrack}}[r\text{Nat},t\text{Sim},"sum"] = (\text{betas.1}(r\text{Nat},t\text{Sim}) + \text{betag.1}(r\text{Nat},t\text{Sim}) + \text{betaphi.1}(r\text{Nat},t\text{Sim}));
\]

betas.fx[rNat,tSim] = betas.1(rNat,tSim) / p_{\text{betaTrack}}[rNat,tSim,"sum"];
betag.fx[rNat,tSim] = betag.1(rNat,tSim) / p_{\text{betaTrack}}[rNat,tSim,"sum"];
betaphi.fx[rNat,tSim] = betaphi.1(rNat,tSim) / p_{\text{betaTrack}}[rNat,tSim,"sum"];

### 3.10.7 Debt accumulation from foreign savings

Accounting identities in the model ensure (for each time period) that the sum of regional and foreign savings in each region equals gross investments, while foreign savings are equal to the foreign trade deficit. The latter is determined, in the GTAP model (Hertel and Tsigas 1997, Corong et al. 2017), which defines the intra-periodal equilibrium in G-RDEM) by the mechanism of regional allocation of investments. It turn, this is based on a distribution of global savings, driven by relative expected returns on capital, as it is briefly illustrated in the following.

Let denote the price of a homogeneous capital factor (services) as \( p_c \) and \( p_i \) as the price of investments (the cost of producing one unit of new capital good), \( \kappa \) the tax rate on capital earnings, \( fdepr \) the depreciation rate. The net rate of return in a region \( r (rorc) \) is defined in the GTAP model as:

\[
rorc_r = \frac{p_{c,r}[1-\kappa_r]}{p_{i,r}} - fdepr
\]

The expected rate of return \( rorc \) takes into account the difference between start and end of period capital stocks, \( k_e \) and \( k_s \). The logic is that investors should become more cautious when aggregate investments lead to large changes in capital stocks:
The parameter $rorFlex$ (whose default value is 10 for all regions) dampens the relative differences in expected returns, thereby avoiding the generation of unrealistically large flows of (real) capital in international markets. In addition, a regional risk factor is introduced, to ensure that an arbitrage condition for the international investor holds in the calibration data set, meaning that a single global, risk-adjusted return $rorg$ is identified:

$$\overline{rove} = \overline{rorc}$$

(7)

The condition (7) holds in all periods in G-RDEM, where $rorg$ and $rove$ are endogenous variables. Therefore, the relationships above drive the distribution of foreign savings $fsav$ or, equivalently, the amount of investments in each region (which do not generally match with regional savings).

The global investor hence expects equal returns of $rorg$ on his savings in any region. Accordingly, the returns in year $t$ from foreign savings add up to zero as, by construction, the global economy is closed, and total investments equal total savings (equivalently, the global trade balance is zero):

$$\sum rfsav, rorg \equiv 0$$

(8)

The model considers four elements to define the BOP: (1) remittances, (2) development aid, (3) foreign savings and (4) payments to or from the global bank. The first two elements are only found if the $myGTAP$ module is used. The debt accumulation mechanism determines the payments to or from the global bank and is based on the following core elements. Firstly, foreign savings are loans paid back in equal instalments over ten years, with a fixed interest rate equal to the expected rate of return in the year $t$ and country $rorc$ where the loan is granted. This expected rate $rorc$ reflects returns to capital after depreciation and direct taxation and a country specific risk parameter $risk$. Note that a lower risk parameter implies a higher risk assumed by the global bank, according to the relation between $rorc$ and the global average expected return $rorg$:

$$rorc_{r,t}^{risk_{r,t}} = rorg_{r,t}$$

(48)

The total amount of outstanding debt $debt$ for a country in a year is the sum of past loans granted by the global bank, i.e. in years with a positive foreign saving, minus repayments on past loans. We consider further that countries might default on part of their debt, expressed by the parameter $accum$ which is the share of the debt honoured:

$$debt_{r,t} = \sum_{t<tt} \max(0, savf_{r,tt}) \text{accum}_{r,t} \max(0 - 1/10 [t - tt])$$

(49)

The payments related to old debt comprise the repayments, i.e. 10% on the stock, and the interest rate $rorc$:

$$paym_{r,t} = \sum_{t<tt} \max(0, savf_{r,tt}) \text{accum}_{r,t} \max(0 - 1/10 [t - tt]) \left(1/10 + rorc_{r,tt}\right)$$

(50)

The payments which the global bank receives in the current year $t$ from each country $r$ and for each past year $tt$ are:
The returns for a country $r$ in each year $t$ are a share on the returns on the total global loans granted in previous years $tt$. Note that returns from past years are only occurring when the country acted as a lender, i.e. when its foreign savings were negative:

$$
returns_{r,tt} = \sum_{r,tt} \max(0, sav_{r,tt}) \cdot \text{accum}_{r,t} \cdot \max(0 - 1/10 [t - tt]) \cdot (1/10 + \text{ror}_{r,tt})
$$

(51)

The regional income equation of the country in each year reflects the difference between the returns and the payments, i.e.

$$
capTrans_{r,t} = \text{pym}_{r,t} - returns_{r,t}
$$

(52)

That means that payments to the bank decrease the share of the GDP which can spent on final consumption and otherwise.

The share of the debt $\text{accum}$ which is assumed to be honoured, i.e. not defaulted, is assumed to depend on the debt stock relative to GDP. Note that we take only foreign debt into account, i.e. the net position with the global bank. Specifically, we assume, that defaulting on part of the debt starts if the foreign debt to gdp level exceeds 30%. For each percentage point above that thresholds, one percentage of defaulted past loans are assumed. That mechanism avoids that country can accumulate very large debt stocks:

$$
\text{accum}_{r,t} = \min(\max(1 - \left[\text{debt}_{r,t} / \text{gdp}_{r,t} - 1\right] - 0.3))
$$

(54)

That correction alone would however assume that the global bank does not respond to the fact that countries are not fully paying back past loans and serving interest. We therefore let the global bank adjust its country specific risk parameter depending on the current year’s return received from payments to the bank relative to GDP. The global bank reacts before critical debt levels occur and part of the loans are not honoured, i.e. the risk parameter is already updated earlier. Similar, receiving payments from the bank decreases the risk. As the global bank mechanism is quite sensitive to very low or high risk parameters, we need some security bounds:

$$
\text{risk}_{r,t} = \min(0.2, \text{risk}_{r,t0} \cdot \min(1.25, \max \left(0.4, \left[1 - \text{debt}_{r,t} / \text{gdp}_{r,t}\right]^{0.8}\right)\right))
$$

(55)

Note that lenders to the bank also receive an update of their risk parameter, i.e. they become more attractive for foreign investments. It is obvious that the thresholds and the elasticity of eight are not the outcome of econometric work but of a trial-and-error approach which various aggregations.

A practical issue emerged when the mechanism above was applied to some special cases, where foreign savings account for a large share of investments or total final consumption. Examples are some developing countries, receiving large amounts of development aid or remittances, but also “tax havens” such as Malta. In such cases, we noticed that the mechanism above can lead, after some periods, to a situation where regional income gets unrealistically small. To avoid such extreme cases, while allowing for the existence of capital inflows or outflows determined by factors other than expected returns, we introduced a regional share parameter, such that only part of the debt may actually be served (see the Technical Annex for more details).
On the position “debt” the cumulated debt is defined: previous year debt level (which can be positive or negative) plus foreign saving in the current year (again positive or negative). The debt servings in the current year are defined in the “paym” column: the foreign savings on all previous years times expected returns – assuming hence a return fixed when the investment is made – times the size of the time step. If the model runs in 5 year steps, the payment in the

Note the scaling of $\text{p}_\text{capTrans}$ to ensure the global expenditures to serve the debt and related revenues add up to zero.

### 3.10.8 Cost-share adjustment

The question if and to what degree the cost share of total intermediate demand factors changes in the course of economic development is an empirical question, whose answer depends on many factors, such as the industrial composition, the price structure, etc. Analogously, cost shares might be subject to change for individual sectors.

We therefore use again the GTAP 9 Data base for a statistical analysis, taking from there data on cost shares for the intermediate composite in the 57 GTAP industries and regional GDP per capita. We exclude values which were 2.5 times the inter-quartile range away from the median. The estimations were performed on the log of the intermediate costs share relative to the log of income per capita and the square of log income per capita to capture potential saturation effects or turning points. We used a model selection procedure to remove insignificant coefficients. Population acted as regression weights to avoid that smaller countries with similar income levels, such as e.g. in case of the EU27 or partly for Africa, carry too much weight.

We find that the link between GDP per capita and the intermediate cost share can be generally confirmed (see Figure 11). However, for nine industries, the model selection process dropped the relation altogether while the remaining coefficients are mostly highly significant (see Table 13).

![Figure 11](image.png)

**Figure 11**: Significance level of regression coefficients of per capita income for cost share of intermediate composite

There is however no linear trend connecting economic growth to the share of intermediate costs. Our regression reveals that up to around 5,000 USD per capita, the share of intermediate costs in the economy normally increases (first line, “tot”, in Table 6). A possible explanation could be the growing share of manufacturing in the economy, where the share of intermediates is higher. At higher income
levels, the share drops, possibly reflecting the generally lower cost shares of intermediates in service sectors.
### Table 13: Intermediate costs shares in total and for the 57 GTAP sectors, mean, max and min estimates at increasing per capita GDP level in cst USD

<table>
<thead>
<tr>
<th>Sector</th>
<th>mean</th>
<th>max</th>
<th>min</th>
<th>500</th>
<th>1000</th>
<th>5000</th>
<th>10000</th>
<th>50000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>tot</td>
<td>0.515</td>
<td>0.669</td>
<td>0.291</td>
<td>0.495</td>
<td>0.524</td>
<td>0.568</td>
<td>0.558</td>
<td>0.475</td>
<td>0.421</td>
</tr>
<tr>
<td>pdr</td>
<td>0.460</td>
<td>0.992</td>
<td>0.043</td>
<td>0.264</td>
<td>0.269</td>
<td>0.296</td>
<td>0.328</td>
<td>0.478</td>
<td>0.596 ++</td>
</tr>
<tr>
<td>wht</td>
<td>0.571</td>
<td>1.000</td>
<td>0.001</td>
<td>0.637</td>
<td>0.592</td>
<td>0.499</td>
<td>0.463</td>
<td>0.390</td>
<td>0.363 –</td>
</tr>
<tr>
<td>gro</td>
<td>0.425</td>
<td>0.957</td>
<td>0.001</td>
<td>0.275</td>
<td>0.303</td>
<td>0.377</td>
<td>0.414</td>
<td>0.515</td>
<td>0.566 ++</td>
</tr>
<tr>
<td>v.f</td>
<td>0.361</td>
<td>0.847</td>
<td>0.002</td>
<td>0.177</td>
<td>0.200</td>
<td>0.263</td>
<td>0.296</td>
<td>0.391</td>
<td>0.440 ++</td>
</tr>
<tr>
<td>osd</td>
<td>0.451</td>
<td>0.994</td>
<td>0.011</td>
<td>0.249</td>
<td>0.255</td>
<td>0.288</td>
<td>0.328</td>
<td>0.529</td>
<td>0.701 ++</td>
</tr>
<tr>
<td>c.b</td>
<td>0.442</td>
<td>0.989</td>
<td>0.029</td>
<td>0.300</td>
<td>0.303</td>
<td>0.317</td>
<td>0.333</td>
<td>0.398</td>
<td>0.441 ++</td>
</tr>
<tr>
<td>pfb</td>
<td>0.535</td>
<td>0.998</td>
<td>0.044</td>
<td>0.286</td>
<td>0.341</td>
<td>0.472</td>
<td>0.497</td>
<td>0.458</td>
<td>0.405 ++</td>
</tr>
<tr>
<td>ocr</td>
<td>0.325</td>
<td>0.869</td>
<td>0.008</td>
<td>0.227</td>
<td>0.230</td>
<td>0.245</td>
<td>0.263</td>
<td>0.337</td>
<td>0.391 **</td>
</tr>
<tr>
<td>ctl</td>
<td>0.520</td>
<td>0.989</td>
<td>0.046</td>
<td>0.378</td>
<td>0.386</td>
<td>0.430</td>
<td>0.483</td>
<td>0.737</td>
<td>0.946 ++</td>
</tr>
<tr>
<td>oap</td>
<td>0.546</td>
<td>0.984</td>
<td>0.066</td>
<td>0.362</td>
<td>0.402</td>
<td>0.513</td>
<td>0.570</td>
<td>0.727</td>
<td>0.807 ++</td>
</tr>
<tr>
<td>rmk</td>
<td>0.546</td>
<td>0.999</td>
<td>0.106</td>
<td>0.276</td>
<td>0.315</td>
<td>0.427</td>
<td>0.488</td>
<td>0.662</td>
<td>0.756 ++</td>
</tr>
<tr>
<td>wol</td>
<td>0.765</td>
<td>0.996</td>
<td>0.173</td>
<td>0.816</td>
<td>0.719</td>
<td>0.589</td>
<td>0.598</td>
<td>0.788</td>
<td>0.982 ++</td>
</tr>
<tr>
<td>frs</td>
<td>0.399</td>
<td>0.986</td>
<td>0.002</td>
<td>0.142</td>
<td>0.171</td>
<td>0.259</td>
<td>0.311</td>
<td>0.472</td>
<td>0.566 ++</td>
</tr>
<tr>
<td>fsh</td>
<td>0.481</td>
<td>0.952</td>
<td>0.020</td>
<td>0.248</td>
<td>0.277</td>
<td>0.359</td>
<td>0.402</td>
<td>0.522</td>
<td>0.584 ++</td>
</tr>
<tr>
<td>coa</td>
<td>0.561</td>
<td>1.000</td>
<td>0.037</td>
<td>0.480</td>
<td>0.419</td>
<td>0.348</td>
<td>0.372</td>
<td>0.608</td>
<td>0.869 +</td>
</tr>
<tr>
<td>oil</td>
<td>0.433</td>
<td>1.179</td>
<td>0.072</td>
<td>0.514</td>
<td>0.399</td>
<td>0.255</td>
<td>0.246</td>
<td>0.325</td>
<td>0.429 -</td>
</tr>
<tr>
<td>gas</td>
<td>0.471</td>
<td>1.265</td>
<td>0.018</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
</tr>
<tr>
<td>omm</td>
<td>0.528</td>
<td>1.000</td>
<td>0.071</td>
<td>0.411</td>
<td>0.427</td>
<td>0.466</td>
<td>0.484</td>
<td>0.528</td>
<td>0.548 ++</td>
</tr>
<tr>
<td>cmt</td>
<td>0.729</td>
<td>0.995</td>
<td>0.307</td>
<td>0.736</td>
<td>0.736</td>
<td>0.736</td>
<td>0.736</td>
<td>0.736</td>
<td>0.736</td>
</tr>
<tr>
<td>omt</td>
<td>0.726</td>
<td>1.008</td>
<td>0.223</td>
<td>0.763</td>
<td>0.763</td>
<td>0.763</td>
<td>0.763</td>
<td>0.763</td>
<td>0.763</td>
</tr>
<tr>
<td>vol</td>
<td>0.784</td>
<td>0.999</td>
<td>0.338</td>
<td>0.813</td>
<td>0.813</td>
<td>0.813</td>
<td>0.813</td>
<td>0.813</td>
<td>0.813</td>
</tr>
<tr>
<td>mil</td>
<td>0.752</td>
<td>0.947</td>
<td>0.440</td>
<td>0.726</td>
<td>0.747</td>
<td>0.784</td>
<td>0.787</td>
<td>0.761</td>
<td>0.737 +</td>
</tr>
<tr>
<td>pcr</td>
<td>0.771</td>
<td>1.000</td>
<td>0.224</td>
<td>0.728</td>
<td>0.754</td>
<td>0.780</td>
<td>0.753</td>
<td>0.615</td>
<td>0.536 +</td>
</tr>
<tr>
<td>sgr</td>
<td>0.662</td>
<td>1.006</td>
<td>0.141</td>
<td>0.684</td>
<td>0.722</td>
<td>0.760</td>
<td>0.720</td>
<td>0.530</td>
<td>0.430 -</td>
</tr>
<tr>
<td>ofd</td>
<td>0.690</td>
<td>0.968</td>
<td>0.417</td>
<td>0.738</td>
<td>0.751</td>
<td>0.756</td>
<td>0.732</td>
<td>0.625</td>
<td>0.563 -</td>
</tr>
<tr>
<td>b.t</td>
<td>0.603</td>
<td>0.897</td>
<td>0.146</td>
<td>0.565</td>
<td>0.599</td>
<td>0.656</td>
<td>0.649</td>
<td>0.565</td>
<td>0.506 -</td>
</tr>
<tr>
<td>tex</td>
<td>0.664</td>
<td>0.952</td>
<td>0.272</td>
<td>0.693</td>
<td>0.710</td>
<td>0.724</td>
<td>0.704</td>
<td>0.605</td>
<td>0.546 -</td>
</tr>
<tr>
<td>wap</td>
<td>0.632</td>
<td>0.974</td>
<td>0.237</td>
<td>0.726</td>
<td>0.710</td>
<td>0.673</td>
<td>0.658</td>
<td>0.624</td>
<td>0.610 –</td>
</tr>
<tr>
<td>lea</td>
<td>0.669</td>
<td>1.000</td>
<td>0.275</td>
<td>0.713</td>
<td>0.710</td>
<td>0.693</td>
<td>0.677</td>
<td>0.619</td>
<td>0.587 –</td>
</tr>
<tr>
<td>lum</td>
<td>0.680</td>
<td>0.979</td>
<td>0.295</td>
<td>0.625</td>
<td>0.646</td>
<td>0.683</td>
<td>0.681</td>
<td>0.637</td>
<td>0.603 -</td>
</tr>
<tr>
<td>ppp</td>
<td>0.650</td>
<td>0.950</td>
<td>0.339</td>
<td>0.692</td>
<td>0.708</td>
<td>0.714</td>
<td>0.685</td>
<td>0.557</td>
<td>0.486 -</td>
</tr>
<tr>
<td>p.c</td>
<td>0.860</td>
<td>1.374</td>
<td>0.418</td>
<td>0.939</td>
<td>0.935</td>
<td>0.915</td>
<td>0.894</td>
<td>0.820</td>
<td>0.780 –</td>
</tr>
<tr>
<td>crp</td>
<td>0.732</td>
<td>1.000</td>
<td>0.395</td>
<td>0.772</td>
<td>0.769</td>
<td>0.750</td>
<td>0.730</td>
<td>0.663</td>
<td>0.626 -</td>
</tr>
<tr>
<td>nmm</td>
<td>0.657</td>
<td>1.000</td>
<td>0.235</td>
<td>0.729</td>
<td>0.705</td>
<td>0.653</td>
<td>0.631</td>
<td>0.584</td>
<td>0.565 –</td>
</tr>
<tr>
<td>i.s</td>
<td>0.778</td>
<td>0.998</td>
<td>0.411</td>
<td>0.795</td>
<td>0.792</td>
<td>0.774</td>
<td>0.757</td>
<td>0.694</td>
<td>0.660 -</td>
</tr>
<tr>
<td>nfm</td>
<td>0.764</td>
<td>0.999</td>
<td>0.457</td>
<td>0.792</td>
<td>0.785</td>
<td>0.769</td>
<td>0.762</td>
<td>0.746</td>
<td>0.740 –</td>
</tr>
<tr>
<td>fmp</td>
<td>0.680</td>
<td>0.998</td>
<td>0.294</td>
<td>0.739</td>
<td>0.733</td>
<td>0.703</td>
<td>0.672</td>
<td>0.570</td>
<td>0.518 -</td>
</tr>
<tr>
<td>mvh</td>
<td>0.723</td>
<td>1.000</td>
<td>0.270</td>
<td>0.750</td>
<td>0.750</td>
<td>0.750</td>
<td>0.750</td>
<td>0.750</td>
<td>0.750</td>
</tr>
<tr>
<td>otn</td>
<td>0.679</td>
<td>1.070</td>
<td>0.236</td>
<td>0.734</td>
<td>0.716</td>
<td>0.677</td>
<td>0.661</td>
<td>0.625</td>
<td>0.610 –</td>
</tr>
</tbody>
</table>
On the other hand, our estimates provide rather clear results for agricultural activities: with the exception of wheat (wht), all agro-industries show increasing cost shares of intermediates at higher levels of per capita income. For animal processes, the differences in the shares are more pronounced compared to crops. Similarly, there are strong increases in intermediate shares for forestry (frs), fisheries (fsh) and coal mining (coa), and moderate ones for “other minerals” (omn), whereas the shares are dropping for oil extraction and no significant relation was found for the gas extraction.

Contrary to primary sectors, almost no manufacturing industry displays increasing shares. Food and meat processing (cmt, omt) as well as oil seed crushing (vol) show no clear relation to income. For the remaining food processing sectors, the intermediate cost shares peak at around 5,000 USD. For the rest of manufacturing, the strongest are typically found at the low income levels, although differences in the shares are often not very large.

There is also no uniform tendency for electricity, gas and water distribution activities (ely, gas, wtr) and construction (cns), where intermediate shares peak at medium income levels. Interestingly, results for all service industries highlight a clear direction: intermediate shares increase at higher per capita income levels. Especially high shares are found in the transportation services (otp, wtp, atp), which are around 80%, while the remaining services typically reach values around 50%.

If preferences are a function of income per capita, reflected in non-linear Engel curves, then the portfolio of products offered by the economy clearly changes. As Chenery et al. 1986 put it “On the demand side, a rise in income can only be sustained if the goods and services made available correspond to the proportions in which consumers wish to spend their income”. We already addressed this issue for the final demand through the introduction of an AIDADS demand system, but further adjustments are in order on the production side, to account for income-dependent variations in
intermediate demand. Indeed, an often neglected aspect in CGE and input-output models is that industries internally include many diverse production processes, characterized by different technologies. Variations in demand patterns therefore occur not only between the macro-industries, but also inside them: aggregate industrial cost structures should be better interpreted as reflecting the internal composition of a sector, rather than describing the production function of a representative firm. Consequently, input-output coefficients can well evolve over time, following changes in income, prices, foreign trade, demography, etc., in a way not too different from the one affecting household final consumption. In parallel, processes such as capital accumulation and the related shift to more capital based production technologies can systematically affect the cost shares in certain industries.

Already Arrow and Hoiffenberg, 1959 decomposed changes in input-output coefficients into variations due to real disposable income and variations due to technology and tastes. Skolka, 1989 further provided a structural decomposition analysis for Austria along these lines, thereby explicitly considering that I-O coefficients are not static, but actually change along the process of economic development. This contrasts with the approach followed in most dynamic CGE models, where changes in the industrial cost shares are only attributed to two causes: non-Hicksian technological progress and changes in relative prices.

As an example, consider the “Other food” sector in GTAP, comprising a wide range of processing activities of crop and fish based products. Here the ICP data set, which was used to estimate the AIDADS demand system, includes expenditure data of subcategories such as “bread”, "Other bakery products", "Pasta products", "Jams, marmalades and honey", "Confectionery, chocolate and ice cream" etc.. A simple regression on the shares of more disaggregated data relative to totals reveals that they typically are income dependent. As some of these categories require different inputs in production and are based on different technological processes, also the I-O composition of the “Other food” industry should hence be income dependent.

Therefore, I-O coefficients should be not considered as constant in the long-term, where income varies significantly. Since the model already accounts for price-induced compositional changes in intermediate demand, and possibly Hicksian non-neutral technical progress, we include in G-RDEM the modelling of income-related variations.

Our basic hypothesis is that I-O coefficients are income dependent, likewise final consumption shares. Since time series consistent with the GTAP industrial classification are not available, we test our hypothesis using a sectional approach, using once more the GTAP 9 data base, as we did for the intermediate composite. From the 3.249 I-O coefficients (57x57) in the data base, the model selection process filtered a significant relation to GDP per capita in as many as 3.213 of them. The histogram in Figure 9, showing the significance levels, highlights that for more than two thirds of elements in the sample they are significant at 1% level or below.
Consider the agricultural “coarse grains” industry as an example, and its six largest cost shares (see Table 14). For two of them, corresponding to seeds and transport, there is no clear income dependence. Services tend to grow with higher per capita income, whereas shares of chemical and petroleum products decrease. Coarse grains could hence been seen as an example where economic development, through changes in technology – intensification in crop production by using more fertilizers, machinery etc. – and outsourcing of activities (contract work) drive differences in costs shares.

**Table 14: Main cost shares in coarse grains as a function of per capita income**

<table>
<thead>
<tr>
<th>Cost Share</th>
<th>mean</th>
<th>max</th>
<th>min</th>
<th>500</th>
<th>1000</th>
<th>5000</th>
<th>10000</th>
<th>50000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>gro.a_crp.c</td>
<td>0.173</td>
<td>0.666</td>
<td>0.000</td>
<td>0.113</td>
<td>0.138</td>
<td>0.199</td>
<td>0.210</td>
<td>0.187</td>
<td>0.161</td>
</tr>
<tr>
<td>gro.a_trd.c</td>
<td>0.048</td>
<td>0.611</td>
<td>0.000</td>
<td>0.041</td>
<td>0.041</td>
<td>0.047</td>
<td>0.053</td>
<td>0.083</td>
<td>0.109</td>
</tr>
<tr>
<td>gro.a_gro.c</td>
<td>0.043</td>
<td>0.315</td>
<td>0.000</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
</tr>
<tr>
<td>gro.a_p.c.c</td>
<td>0.030</td>
<td>0.400</td>
<td>0.000</td>
<td>0.008</td>
<td>0.014</td>
<td>0.044</td>
<td>0.056</td>
<td>0.051</td>
<td>0.037</td>
</tr>
<tr>
<td>gro.a_otp.c</td>
<td>0.027</td>
<td>0.118</td>
<td>0.000</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>gro.a_obs.c</td>
<td>0.012</td>
<td>0.217</td>
<td>0.000</td>
<td>0.002</td>
<td>0.005</td>
<td>0.018</td>
<td>0.028</td>
<td>0.049</td>
<td>0.052</td>
</tr>
<tr>
<td>gro.a_ofi.c</td>
<td>0.008</td>
<td>0.071</td>
<td>0.000</td>
<td>0.001</td>
<td>0.003</td>
<td>0.014</td>
<td>0.018</td>
<td>0.012</td>
<td>0.007</td>
</tr>
<tr>
<td>Sum</td>
<td>0.233</td>
<td>0.267</td>
<td>0.378</td>
<td>0.416</td>
<td>0.439</td>
<td>0.428</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integration of the regression results in the model is not a trivial task, as shares found at the base year may deviate considerably from the estimates. One option is to realign estimates and data by adding an error term to the intercept in the regressions, while considering also the effect of changes.

This is necessary because, for example, absolute changes may lead to negative shares when the shares are small. On the other hand, relative changes would keep small shares forever small, much like as it happens for trade shares in the Armington formulation.

We therefore opt here for an approach where the error terms $err$ are adjusted on the basis of the following equation, where $inc$ stands for GDP per capita in the benchmark $\theta$ and in the current simulation year $t$, whereas $and$ refers to the share parameter for the intermediate composite:
The estimated coefficients are stored in the GDX file “gams/gtapRdem/io_regr_res.gdx” on the parameter p_estres. As a first step, we remove any non-availables (NA):

\[
P_{\text{estres}}(\text{idat}, \text{jdat}, \text{regrcoef}) \text{ if } (\text{mapVal}[P_{\text{estres}}(\text{idat}, \text{jdat}, \text{regrcoef})]) = 0; \\
P_{\text{estres}}(\text{idat}, \text{nd.share}, \text{regrcoef}) \text{ if } (\text{mapVal}[P_{\text{estres}}(\text{idat}, \text{nd.share}, \text{regrcoef})]) = 0;
\]

Next, we deduct the estimate at benchmark per capita income and store it temporarily on the parameter \( p_{\text{corr}} \) from the given io-coefficient.
Similar statements perform the same operation for io-coefficients in technology nests and for the intermediate composite cost share. During simulation, we first calculate the error correction factor \( p_{\text{errCorr}} \) as a function of per capita income in the current simulation point \( t_{\text{Sim}} \) and the benchmark \( t_0 \), as discussed above:

\[
p_{\text{errCorr}}(r_{\text{Nat}}) = \max(0, 1 - 0.5 \cdot \text{abs}((p_{\text{perCapIncome}}(r_{\text{Nat}}, t_{\text{Sim}}) - p_{\text{perCapIncome}}(r_{\text{Nat}}, t_0)) / p_{\text{perCapIncome}}(r_{\text{Nat}}, t_0)))
\]

Next, calculate the estimate at the current income

\[
\text{and}(r, a, t_{\text{Sim}}) \times \{ \text{and}(r, a, t_{\text{Sim}}); p_{\text{corr}}(r, a, \text{"nd"}) \}
= \exp[\text{sum}(\text{map}(\text{Dat}, a), p_{\text{estRes}}(\text{Dat}, \text{nd.share}, \text{"int"})
+ \text{sum}(r_{\text{Nat}}, p_{\text{estRes}}(\text{Dat}, \text{\"log GDP\"}), \log(p_{\text{perCapIncome}}(r_{\text{Nat}}, \text{"t0"}))
+ p_{\text{estRes}}(\text{Dat}, \text{\"log GDP\"}), \exp(\log(p_{\text{perCapIncome}}(r_{\text{Nat}}, \text{"t0"}))
+ \text{sign}(\log(p_{\text{perCapIncome}}(r_{\text{Nat}}, \text{"t0"}))])])];
\]

Adding subsequently a part of the error term \( p_{\text{corr}} \) at the benchmark according to the factor \( p_{\text{errCorr}} \) and introduce security bounds:

\[
\text{and}(r, a, t_{\text{Sim}}) \times \{ \text{and}(r, a, t_{\text{Sim}}) \times p_{\text{corr}}(r, a, \text{"nd"}) \}
= \min(\text{and}(r, a, \text{"t0"}) \times 2, 1 - 0.5 \cdot \text{abs}(p_{\text{corr}}(r, a, \text{"t0"}) \times (1 + 0.1 \cdot \text{p_timeStep}(t_{\text{Sim}})),
\max(\text{and}(r, a, \text{"t0"}) \times 0.5, \text{and}(r, a, t_{\text{Sim}}) \times (1 - 0.1 \cdot \text{p_timeStep}(t_{\text{Sim}})),
\{ \text{and}(r, a, t_{\text{Sim}}) + p_{\text{corr}}(r, a, \text{"nd"}) \times p_{\text{errCorr}}(r) \}
\text{px}(r, a, t_{\text{Sim}}) / \text{px}(r, a, \text{"t0"}) \times 1 / \text{pnd}(r, a, t_{\text{Sim}})
\})
\]

The value added share is calculated residually:

\[
\text{ava}(r, a, t_{\text{Sim}}) = 1 - \text{and}(r, a, t_{\text{Sim}});
\]

Note here:

1. The application of the estimation is not allowed to more than double or half the benchmark coefficient.
2. The coefficients are not allowed to change by more than 0.1 time the number of simulated years. For individual IO-cost shares, the changes are limited to 0.025 per year.
3. The estimated error terms are introduced in the update process as well such that the for the first year \( t_{\text{Sim}}=1 \), per capita income for the benchmark will enter, such that the last term will yield exactly the observed IO coefficient. The process hence only adds the changes from year to year in the estimated to the benchmark coefficient.

Similar statements estimate and apply shifters for the other elements. The IO-cost shares are scaled to maintain the original sum:

\[
p_{\text{scale}}(r, a) \times \{ \text{sum}(j, p_{\text{io}}(r, j, a, t_{\text{Sim}})) \}
= \text{sum}(j, p_{\text{io}}(r, j, a, \text{"t0"})) / \text{sum}(j, p_{\text{io}}(r, j, a, \text{"t0"}));
\]

\[
io(r, i, a, t_{\text{Sim}}) \times \{ \text{io}(r, i, a, t_{\text{Sim}} - 1) = \text{io}(r, i, a, t_{\text{Sim}}) \times p_{\text{scale}}(r, a) \};
\]
3.10.1 Endogenous expenditure shares for government and investment demand

Similar to the discussion around industry cost shares depending on economic development, the composition of investment demand might change in the process of economic growth reflecting both a different sectoral composition of the economy and different capital stock composition in each sector. For instance, the share of investments in patents or similar might increase with higher income levels. In the same vein, the composition of government demand might change.

In both cases, we follow an empirical approach by employing regression analysis to the cross-sectional data provided by the GTAP SAM. We use expenditure shares for individual commodities on total investment respectively government demand as dependent variables, and the logarithm of income and its squares as explanatory ones. In case of government expenditure, we also use its total share on regional income, linear and in squares, as independents. A model selection process removes insignificant regressors from the estimation equation to avoid spurious results. We use total population as weights.

The integration into the simulation framework follows the approach used for industry cost shares. We use a weighted average of the expenditure share at the benchmark and the estimates, defining weights based on the relative difference of the projected per capita income from the benchmark. The closer the projection to the benchmark, the closer the expenditure share is to the one found in the SAM while large deviations will drive the shares towards their estimates.

Technically, in order to prepare for simulation, we need therefore the error terms for the current regional and sectoral aggregation. We therefore first define the estimates, temporarily on the parameter $p_{corrInv}$, using the per capita income $p_{perCapIncome}$ at the benchmark “%t0%” on the RHS together with the parameters found on $p_{estResInv}$. The estimations are performed on the 57 sector resolution of the data base as depicted by the set $iDat$. In case of an aggregated data base being used for simulation, the cross set $mapi$ depicts which of these 57 sectors are aggregated to the sector list in use $i$ such that estimated shares are aggregated. The regression results are only used if income dependencies were found, i.e. at least one of the regression coefficients is non-zero:

$$p_{corrInv}(iNat,i) = \alpha[iNat,i,\text{inv","%t0%"}]$$

$$\sum(mapi(iDat,i),p_{estResInv}(iDat,\log_{GDP}) \text{ or } p_{estResInv}(iDat,\text{log}_{GDP}))$$

$$\text{sign}(\log[p_{perCapIncome}(iNat,\%t0%)])\cdot p_{scaleInvToSplit}(iNat,i);$$
From there, we define the error term at the benchmark as the difference to the benchmark share \( p_{\text{alpha}a.l} \).

\[
p_{\text{corrInv}}(r\text{Nat},i) = (p_{\text{alpha}a.l}(r\text{Nat},i,"inv","%t0\%")) - p_{\text{corrInv}}(r\text{Nat},i);
\]

The amount of the error applied in year \( t_{\text{Sim}} \) is defined as follows (see industry cost shares for a discussion):

\[
p_{\text{errCorr}}(r\text{Nat}) = \max(0,1 - 0.5*\text{abs}((p_{\text{perCapIncome}}(r\text{Nat},t_{\text{Sim}}) - p_{\text{perCapIncome}}(r\text{Nat},"%t0\%")) / p_{\text{perCapIncome}}(r\text{Nat},"%t0\%")));
\]

During simulation, we first define the estimated shared at the projected per capita income, the expression is identical to the one discussed above with the exemption that the current simulation year \( t_{\text{Sim}} \) is used instead of the benchmark point “\( \%t0\% \)”. Shares comprised in final demand nests \( d\text{Nest} \) are aggregated to yield the share of the nest on expenditures:

\[
\alpha_{\text{DN}}(r\text{Nat},d\text{Nest},"inv",t_{\text{Sim}}) = \sum(d\text{Nest}_i \text{ fd}(d\text{Nest}_i,"inv"), \alpha_{\text{alpha}a.l}(r\text{Nat},i,"inv",t_{\text{Sim}}));
\]

Next, we add the share part \( p_{\text{errCorr}} \) of the error term \( p_{\text{corrInv}} \) at the benchmark to the estimate, that is the expression in the last line in curly brackets. If \( p_{\text{errCorr}} \) is equal to one, the full error term is added the the last line is equal to the benchmark share. As \( p_{\text{errCorr}} \) decreases to zero, the expression in curly brackets approaches the regression the results. The surrounding min and max operators define security bounds preventing that expenditure shares more than double or half or increase by more than 5% from year to year:

\[
\alpha_{\text{alpha}a.l}(r\text{Nat},i,"inv",t_{\text{Sim}}) \cdot p_{\text{corrInv}}(r\text{Nat},i) = \min(\alpha_{\text{alpha}a.l}(r\text{Nat},i,"inv",t_{\text{Sim}}) - 0.05*p_{\text{timeStep}}(t_{\text{Sim}}),
\max(\alpha_{\text{alpha}a.l}(r\text{Nat},i,"inv",t_{\text{Sim}}) + 0.05*p_{\text{timeStep}}(t_{\text{Sim}}),
\alpha_{\text{alpha}a.l}(r\text{Nat},i,"inv",t_{\text{Sim}}) + p_{\text{corrInv}}(r\text{Nat},i)*p_{\text{errCorr}}(r\text{Nat})
);
\]

Similar, expenditure share of demand nest \( d\text{Nest} \) are defined:

\[
\alpha_{\text{alpha}a.D}(r\text{Nat},d\text{Nest},"inv",t_{\text{Sim}}) \cdot p_{\text{corrInv}}(r\text{Nat},d\text{Nest}) = \min(\alpha_{\text{alpha}a.D}(r\text{Nat},d\text{Nest},"inv",t_{\text{Sim}}) - 0.05*p_{\text{timeStep}}(t_{\text{Sim}}),
\max(\alpha_{\text{alpha}a.D}(r\text{Nat},d\text{Nest},"inv",t_{\text{Sim}}) + 0.05*p_{\text{timeStep}}(t_{\text{Sim}}),
\alpha_{\text{alpha}a.D}(r\text{Nat},d\text{Nest},"inv",t_{\text{Sim}}) + p_{\text{corrInv}}(r\text{Nat},d\text{Nest})*p_{\text{errCorr}}(r\text{Nat})
);
\]

Finally, we scale the shares to maintain the original sum:
The code for the government share is structurally identical.

The impact on the simulated results seems of lower importance compared to other elements in G-RDEM. This firstly reflects that investment demand is generally a minor component of overall demand. Furthermore, construction ("cns") dominates with shares typically around 55% investment expenditure shares and is found to be little dependent on income, while many other products have very low shares. For government, a very large share is for government services, the share of government demand for other products on total demand is generally quite low.

3.10.2 Steering of G-RDEM model runs

The screenshot presented in Figure 13 below shows how the user can select which data base aggregation to use, decide the time horizon of the baseline as well as the report frequency. For instance, retaining the flexible aggregation approach from GTAP in G-RDEM allows the user to develop a long-term baseline with a focus on only one country, while aggregating the rest of the world into a single aggregate. So far, the G-RDEM module has been tested with resolution with up to 80 countries.

![Figure 13: Main steering panel of CGEBox](image)

The set of years to run will always include the benchmark (t0), the last year (eq card(t)) and the first year of the simulation period, which can be used e.g. for estimations from the initialized variables.

```plaintext
&ifthen& "%dynMode%"="Recursive dynamic"

 trun(t0) = YES;
 trun(t) $ (t.pos eq card(t)) = YES;
 trun(t) $ (t.pos eq 2) = YES;
 trun(t) $ (mod(t.pos-1, %timeStep%) eq 0) = YES;
```

For the above input, the resulting years to run are:

```plaintext
--- 1406 SET trun
t00, t01, t05, t10, t15, t20, t25, t30, t35, t40
```

In order to construct the baseline, the user selects (Figure 14) the desired SSP scenario for population and GDP, as well some procedural modules to use.
3.10.3 Population and GDP growth from the IASSA SSPs

IASSA host a web application (http://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/SSP_Scenario_Database.html) which gives access to model results relating to the IPCC model activities comprising GDP growth rate projection by country from a range of models and for different Shared Socio-Economic Pathways (SSPs). Some if GDP projections were downloaded in XLSX format and converted into a GDX container. That container is read by the driver program:

```plaintext
-- load GDP projections from 2005 to 2100, in 10 year steps
execute_load "%datdir%\worldPopProj.gdx" wpl15_Popt;
set modP /"OECD Env-Growth","IASSA GDP"/;
set scen /"SSP1,SSP2"/;
set var /"GDP|PPP"/;
set unitl /"billion US$2005/yr"/;
set gyears /2010,2020,2030,2040,2050,2060,2070,2080,2090,2100/;

case in_p newer GDP projection values:

parameter p_gdp(modP,scen,popreg,var,unitl,gyears);
execute_load "%datdir%\GDP_SSP_IASSA.gdx" p_gdp;
option p_gdp:8:1;
parameter p_gdpC(popreg,*) = ("OECD Env-Growth","SSP2",popreg,"GDP|PPP","billion US$2005/yr",gyears);

--- interpolate linearly between simulation points
set pyears,gyears(allYears,gyears,gyears) / (2010*2019),2010,2020
(2020*2029),2020,2030
(2030*2039),2030,2040
(2040*2049),2040,2050
(2050*2059),2050,2060
(2060*2069),2060,2070
(2070*2079),2070,2080
(2080*2089),2080,2090
(2090*2099),2090,2100
(2100*2100),2100,2100 /;
allas(gYears,gYears1);
p_gdpC(popReg,allYears) = sum(pYears,gYears(allYears,gYears,gyears), p_gdpC(popreg,gyears)) + (p_gdpC(popreg,gyears1)-p_gdpC(popreg,gyears))/10 * mod(allYears,pos-1,10));

--- growth rate between simulation points
p_popGrowth(r,tRun) / (sum(r_poppr(r,popreg),1) * (tRun.pos > 1))
= {[sum(r_poppr(r,popreg),tGdp(tRun,pYears)) , wpl15_Popt("MEDP",popreg,years)] -1} * 100;
```

The labels for the country follow the same codes as for the UN population projections. As seen from above, the projections are not yearly, but by decade. In order to use them flexible with different time steps, the code first interpolates linearly between given time points.
For some countries, notably small islands, no projections are available. In these cases, global unweighted averages are used instead.

```plaintext
*** use average of counties with data for countries with missing ones
p_gdpGrowth(r,tRun) = sum(sameas(r,emptyGdp),1) * (tRun.pos > 1))
= sum(rr $ p_gdpGrowth(rr,tRun),1); display p_gdpGrowth;
```

For use in the model, per capita growth is used:

```plaintext
*** GPD growth per capita is the economy wide growth rate minus population growth rate
p_gdpPerCapGrowth(r,tRun) = (tRun.pos > 1) - p_popGrowth(r,tRun);
```

### 3.10.4 Using the G-RDEM generated baseline for counterfactual analysis

Besides analysing the baseline itself or comparing different baselines against each other, they also might serve as starting point for some counterfactual analysis. Two types of simulations are currently supported in the CGEBox platform. The first one uses the shifters generated during the baseline construction (changes in saving rates, productivity shifters, updated I-O coefficients), as well as population projections, as given parameters into a recursive-dynamic simulation. That would make only sense if the structural set-up of the model is unchanged (production function nesting, bi-lateral trade, etc.). During such a run, GDP would no longer be fixed, but endogenous and, as usual, shocks can be introduced, such as changes in policies or productivity, like climate change impacts on agricultural yields. Parameter estimates for some impacts (like those of climate) are already available in CGEBox and can be readily inserted during the simulation runs, by means of the graphical interface.

The second type of possible utilization of G-RDEM is in the provision of input data for comparative-static analysis. In this case, the global SAM and parameters for one of the simulated time points could be loaded as a replacement for benchmark data from GTAP. The full modular flexibility of CGEBox could then be exploited, allowing to modify several characteristics of the model. That approach might be also interesting to produce not a long-run, but a rather a medium-term baseline as an ex-ante benchmark, which is for instance the usual practice in partial equilibrium modelling of agri-food markets.

The first option is to use the G-RDEM module in non-baseline generation mode:
In the case, the user can select the baseline results to employ. That will load the necessary shifters and exogenous parameters into the GAMS code:

```gams
variable expPrev[r,a,t],betasPrev[r,t],betagPrev[r,t],betapPrev[r,t];
parameter ioPrev[r,i,a,t],icNestPrev[r,i,a,*,t],avaPrev[r,a,t],andPrev[r,a,t];
$GDXIN *breedir\run\%baselineRest*
$LOAD expPrev = exp
$LOAD betasPrev = betas
$LOAD betagPrev = betag
$LOAD betapPrev = betap
$LOAD ioPrev = io
$LOAD icNestPrev = icNest
$LOAD andPrev = and
$LOAD avaPrev = ava
$LOAD p_timeStep
$LOAD p_growthRate
$GDXIN
```

We have checked that without additional shocks, the existing baseline will be recovered without that GDP is fixed.

The second option requires that during baseline generation, altertax output is activated:

That will output the SAM and other information required for a benchmark calibration of the model are stored in “build” directory:

- 57x10_alttax_t01.gdx
- 57x10_alttax_t05.gdx
- 57x10_alttax_t10.gdx
- 57x10_alttax_t00.gdx

These benchmark data can be used similarly to the output from the data preparation step. If the user wants to use the specific module, which requires additional information (AEZ, CO2 and Non-CO2 emissions, NUTS2), these modules must have been selected during the generation of the baseline. The data can therefore be chosen as a starting point for comparative (or even recursive-dynamic) analysis:

That makes the layout of the model fully adjustable (e.g., by adding myGTAP for several household types, a different production nesting, changes in how bi-lateral trade is modelled).

### 3.10.5 Specific nestings in G-RDEM

We add some specific nestings for the production function (see gams\gtaprdem\gtaprdem.gms):

155
GTAP-AGR has proven to work badly with some long-term projections, because of limited factor mobility between agricultural and non-agricultural sectors. Therefore, only the technology nests from GTAP-AGR are taken over:

In order to reflect stronger substitutional relations between animal and crop based products, two final demand nests are constructed:

```gams
set cropD(i); cropD(i) $ sum(mapi({crops, i}, 1)) = YES;
cropD(i) $ mapi("vol", i) = YES;
cropD(i) $ mapi("dcr", i) = YES;
cropD(i) $ mapi("sgv", i) = YES;
cropD(i) $ mapi("dfr", i) = YES;
cropD(i) $ mapi("bt", i) = YES;
dNest("cropD") = YES;
dNest_i_fd("cropD", cropD, fdn) = YES;
dNest_i_fd("top", cropD, fdn) = YES;
sigmaFDNest(r, "cropD", Fdn) = .30;
set animD(i); animD(i) $ sum(mapi({lstk0, i}, 1)) = YES;
animD(i) $ mapi("cmr", i) = YES;
animD(i) $ mapi("cmc", i) = YES;
animD(i) $ mapi("mtr", i) = YES;
animD(i) $ mapi("cmt", i) = YES;
animD(i) $ mapi("ct", i) = YES;
dNest("animD") = YES;
dNest_i_fd("animD", animD, fdn) = YES;
dNest_i_fd("top", animD, fdn) = YES;
sigmaFDNest(r, "animD", Fdn) = .50;
```
3.10.6 Endogenous non-Hicks neutral technical progress and primary factors supply

In addition to price driven changes in endowments, the marginal productivity can also be rendered price dependent. In the default setting, the labour force is reacting to population changes fully, while land, irrigation water and natural resources follow to a limited extend (positive changes) in population. The other elements are by default switched off.

The input from the GUI is mapped to the following symbols in the GAMS code:

```gams
* --- link changes in factor endowments to changes in population,
* p_popShift{r,"land"} = %landToPopElast%;

\$ifthen\$ %GTP% "nFactors" >8
p_popShift{r,"water"} = %waterToPopElast%;
\$endif\$ %GTP% "nFactors"

p_popShift{r,"natres"} = %natResToPopElast%;

* --- labour shares follow population growth
* p_popShift{r,1} = %labToPopElast%;

* --- factor expansion depending on factor price developments:
* labor participation rates react to wage rate changes
set dummyPG / xf,tp /;
option kill=p_priceShift;

* --- endogenous non-Hicks neutral progress to depending on development of factor prices
p_priceShift{r,"tm","land"} = %landTPToPfElast%;

\$ifthen\$ %GTP% "nFactors" >8
p_priceShift{r,"tm","water"} = %waterTPToPfElast%;
\$endif\$ %GTP% "nFactors"

p_priceShift{r,"tm","natres"} = %natResTPToPfElast%;
p_priceShift{r,"tm",1} = %labTPToPfElast%;
p_priceShift{r,"tm",cap} = %capTPToPfElast%;

* --- factor supply to factor price
* p_priceShift{r,"xf","land"} = %landXFToPfElast%;

\$ifthen\$ %GTP% "nFactors" >8
p_priceShift{r,"xf","water"} = %waterXFToPfElast%;
\$endif\$ %GTP% "nFactors"

p_priceShift{r,"xf","natres"} = %natResXFToPfElast%;
p_priceShift{r,"xf",1} = %labXFToPfElast%;
```

We also take changes in education levels into account:
G-RDEM: Long-term baseline generation and analysis

The population and factor price shifters are implemented as follows:

```plaintext
* ... shift factor supply depending on population and factor prices
af(t,r,fn,tSim) = af(t,r,fn,tSim-1) * (1 + sum_i(r,rNat) * (p_popShift(iNat,f=af(t,r,fn,tSim-1)) + p_priceShift(r,fNat,tSim-1-1)) + sum_i(r,rNat) * p_priceShift(r,fNat,tSim-1-1)) + min(10,max(-0.95,0.9) * (not fn) * pfl(1,r,fn,tSim-1-1)))
gf(r,fNat,a,tSim) = gf(r,fNat,a,tSim-1) * (1 + sum_i(r,rNat) * (p_popShift(iNat,f=af(t,r,fn,tSim-1)) + p_priceShift(r,fNat,tSim-1-1)) + sum_i(r,rNat) * p_priceShift(r,fNat,tSim-1-1)) + min(10,max(-0.95,0.9) * (not fn) * pfl(1,r,fn,a,tSim-1-1)))
```

The resulting technical progress changes are calculated as follows:

```plaintext
* ... productivity of factors is updated depending on factor price changes and GDP growth
lambdaf.fs(r,f,a,tSim-1) = lambdaf(r,f,a,tSim-1) * (1.0 + sum_i(r,rNat) * p_priceShift(rNat, tp, f) * min(10,max(-0.95,0.9) * pfl(r,f,a,tSim) * (fn(f) or (omegaf(r,f) ne inf)) + pfl(1,r,f,tSim) * (fn(f) or (omegaf(r,f) eq inf)) -1)) + p_growthRate(rNat, GDPPerCAP, tSim) / 100 * 0.5) * 0 + p_GrowthRate(rNat, Population, tSim) / 100 * (1 - p_popShift(rNat,f)) * 0.5) * 0;
```

### 3.10.7 Analysis of G-RDEM simulation output (exploitation)

Loading all results from long time recursive dynamic with detailed global SAMs might require amounts of memory exceeding most personal computer configurations. Therefore, the exploitation selection allows to pick up only a few years for inspecting the results. Therefore, while all output variables are stored in the GDX repository output file, only the selected ones will be loaded into the memory.

Generally, any view existing in the exploitation tool can be changed to a time series using the pivot facility. In order to ease the exploitation, three views have been pre-configured, under the heading “Time series”: 

![Time series view](image-url)
The first one reports changes in GDP, price indices etc:

The second one focuses on the demand side:

The third one reports production quantities and related input demands:
3.10.8 Computing and data base considerations for G-RDEM runs

Compared to a comparative-static run with the model, constructing a baseline over several decades requires many solves. As indicated above, the time resolution can be chosen by the user. While larger time steps such as five year intervals decrease the number of necessary solves, the resulting shock in each period becomes larger, which implies more time spent by the solver to find a fixed point. For a dataset larger than around 57x24, it is therefore recommended to solve at least in bi-yearly steps, whereas less detailed data sets can still solve quite fast in five year steps. Using the built-in pre-solve mechanism with at least three steps is also recommended for more detailed datasets. Furthermore, we recommend aggregating over the Armingto agents, which removes the agent specific differentiation between domestic and imported shares and reduces the model complexity and rigidities in the demand composition.

Some relatively large data sets have been tested, including 33 from all 57 sectors and 80 countries from the 140 available in GTAP 9. One run over 40 years in 2 year steps with such detailed data base might require about two hours. Note that especially debt accumulation from foreign savings might lead to infeasibilities, such that it might be required to manually reduce the accounted share of related debt servant for specific regions. In the same vein, we typically used an ALTERTAX run to construct
a benchmark where very high negative macro-economic saving rates are reduced (see gams\scen\user_scenarios\corr_betas.gms). These odd saving rates might point a specific problem in GTAP 9 data, as in the 2011 the global economy was still affected by an economic crisis.

More generally, it should be understood that baseline construction is only partially a process which can be delegated to a ready-to-use code. A close look at some key results, such as the evolution of foreign savings, saving rates and sectoral output per capita is recommended to rule out implausible findings. An ALTERTAX adjustment may be needed to vary the initial benchmark or it might be necessary to add specific shocks on top of the baseline mechanism. We also remind the reader that the SSP1 to 5 storylines comprise elements relating to governance such as policies to abate emissions or control land use change which are not integrated in the model structure discussed here.

References


3.11 GTAP-Melitz: Heterogenous firm module

This section is prepared by Yaghoob Jafari and Wolfgang Britz

3.11.1 Summary

The GTAP-Melitz module replaces the Armington assumption to depict bi-lateral trade by a heterogenous firm module where each sector is assumed to consist of firms of differing productivity which each produce quality differentiated products. Firms face fix costs to enter the industry and to become active on specific trade links. The module does not need additional data, the user can select the parameters for the module on the GUI along which the sector to which the module is applied.

3.11.2 Introduction

Since Armington (1969) proposed to treat imported and domestic varieties of goods in the same classification as imperfect substitutes depicted by a CES-utility function, that approach dominated applied Computable General Equilibrium (CGE) analysis. It provides a powerful, but relatively simple framework for studying international trade policy, not at least as it can accommodate any observed pattern of trade flows and related prices, i.e. the intensive margin of trade. However, preferences for each origin in the Armington model are fixed such that changes in trade cannot impact average imported qualities on a trade link. It hence neglects potential variations at the extensive margin of trade such as trade flows in new products which are found as important in empirical analysis (Hummel and Klenow, 2005; Chenny, 2008, among others).

The pioneer paper by Melitz (2003) introduced firm productivity heterogeneity drawing from Hopenhayn (1992) into the monopolistic competition framework by Krugman (1980). The Melitz model combines changes at the intensive and extensive margins of trade by allowing firms to self-select new export markets based on their productivity level. Subsequently, many papers applying the model (Bernard et al., 2003, 2006, 2007; Eaton et al., 2004) supported its empirical evidence by reproducing salient trade patterns observed in recent micro level studies. As the Melitz model provides a more general framework to depict bi-lateral trade which has proven as empirically superior, there have been a number of efforts to introduce firm heterogeneity into CGE models (Zhai 2008; Balistreri et al., 2011; Oyamada, 2013; Akgul et al., 2016; and Dixon et al., 2016).

The first paper which introduced firm heterogeneity following Melitz (2003) into a CGE framework is Zhai (2008). The Zhai-Melitz approach captures variations in the extensive margin of trade flows in contrast to traditional CGE models based on Armington’s (1969) assumption. Zhai (2008) provided the theoretically well-grounded empirical model based on the assumption of no free entry and exit. However, the Zhai implementation allows for adjustments in the extensive margin of trade only as a result of changed export share of firms engaging in a specific trade link, while limiting the variety gains brought by new entrants. Consequently, this assumption results in overestimation of the extensive margin of trade and in turn productivity effect. Balistreri et al. (2011) overcomes that restriction by allowing also for new entrants on each trade link and accounts for a certain exogenous share of firms leaving in each period the industry. Akgul, Viloria and Hertel (2016) introduced the Melitz framework into the standard GTAP model, abstracting from exogenous firm exit.

Besides, Baliseteri and Rutherford (2013) set out stylized versions of the Armington, Krugman, and Melitz under a unified treatment, and then compare the outcome of different approaches. Inspired by Baliseteri and Rutherford (2013), Dixon et al. (2016) draws the connections between the three models by developing them sequentially as special cases of an encompassing model. Dixon et al. (2016) interestingly show that the Armington, Krugman, and Melitz models are progressively less restrictive.
special cases of a more generalized model, derived from a cost minimization problem of a worldwide planner. While Dixon et al. (2016) provide an illustrative numerical general equilibrium model with Melitz sectors, using the earlier version of Dixon et al. (2016), Oyamada (2014) develops a simple AGE framework within which user can switch between Armington, Krugman, and Melitz models, and shows how the Dixon et al. (2016) framework can be parameterized.

We discuss in here the introduction of the Melitz model in CGEBOX. Besides realized in GAMS (GAMS Development Corporation, 2013) and not in GEMPACK (Harrison and Pearson, 1996), it differs from the standard GTAP model (Hertel, 1997) in several aspects. Inter alia, its equations are all written in levels, whereas the GEMACK realization uses mostly equations depicting relative changes in linearized form. Furthermore, it aims at a modular and easily extendable framework. The implementation of the Melitz model discussed in here provides an example of such a modular extension.

The remainder of this paper is structured as follows: the next section (2) presents a brief review of the trade theories literature; section (3) describe the implementation of firm heterogeneity in the CGEBox model; section (4) presents the technical implementation of the CGEBox model with heterogeneous firms along with results of an example application; and finally section (5) concludes.

### 3.11.3 Brief Literature overview

With regard to international trade, traditional applied general equilibrium models fail in two important aspects (see critique by Keohe 2005): they do neither allow (trade) policies to impact on aggregate productivity nor on trade along the extensive margin. In order to overcome these shortcomings, a new type of international trade models has emerged drawing on the Melitz (2003) model. It considers heterogeneous firms under monopolistic competition which can self-select into export market.

In traditional trade theories, countries specialize in production and export of those commodities in which they have comparative advantages, in the Ricardian framework based on differences in technology and in the Heckscher-Ohlin one in endowments. These models assume perfect competition and constant returns to scale, often implying that firm size is indeterminate. Due to the resulting specialization, countries either import or export a certain product. Krugman (1980), Helpman (1981) and Ethier (1982) established the so-called “new” trade theories drawing on variety-based models. Here, firms specialize in distinct horizontally-differentiated varieties of a product which provides an explanation why countries simultaneously export and import within the same broader industry. From the demand side, that provides a specific interpretation of the Armington assumption where quality differences reflect these distinct varieties offered by firms. A key simplification in this strand of literature is the assumption of a representative firm within each country. It is also used by Helpman and Krugman (1985) who combine the traditional and new trade theory within an integrated equilibrium approach to provide an explanation for the pattern of trade where both inter-industry trade and “cross-hauling” can take place.

Increased availability of micro data on plant and firm level since the late 1980s generated empirically evidence challenging these theories of international trade. It became clear that firms are heterogeneous in terms of productivity, export behavior response to trade shocks, and other economic characteristics even within narrowly-defined industries (“one variety”). Specifically, analysis of micro datasets on firms and plants showed that i) only a small minority of firms actually engage in export (Bernard and

---

8 See also Itakura and Oyamada (2013) for technical aspects and Roson and Oyamada (2014) for a review of this emerging field.
Jensen 1995, Bernard et al. 2007) while there is considerable variation in export market participation rates across industries (Bernard et al. 2007); ii) exporters are more productive and larger than non-exporters (Bernard and Jensen 1995, Bernard et al. 2003,2007); iii) productivity dispersion exists across coexisting firms within any sector (Bartelsman and Dom 2000) and among exporters in the number of markets (Eaton et.al 2004); iv) there are substantial reallocation effects within an industry following trade liberalization episodes where more productive firm replaces less productive ones (Foster et.al 2001, Aw et al. 2001) increasing aggregate productivity; and v) endogenous changes in firm productivity via shifting market shares influences within-industry resource allocation (Bernard et al. 2006,2010) and therefore the aggregate productivity.

None of the above-mentioned observations found in micro datasets can be explained with the simplifying assumption of a representative firm within countries or industries made both in the traditional and “new” trade theories. This led to the development of international trade models with firm heterogeneity like that of Melitz (2003). He introduced firm heterogeneity into the model of Krugman (1980) which considers horizontal differentiation into varieties and increasing returns to scale.

Further, the role of the extensive margin, i.e. export of goods not exported before, in observed international trade patterns recently received increased attention. Several studies highlighted the importance of new varieties in export markets and the related welfare implications (see Romer, 1994; Feenstra, 1994; Broda and Weinstein, 2006; Balistreri et al, 2010; Keohe and Ruhl, 2013; among others). That strand of literature is complemented by more theoretical works which discuss impacts of trade liberalization on the extensive margin (Hummel and Klenow, 2005; Chenny, 2008, among others). Traditional applied general-equilibrium models based on the Armington assumption cannot depict changes at the extensive margin of trade\(^9\) as an important source of new trade (Kehoe, 2005). Heterogeneous firm based models like that of Melitz (2003) overcome that shortcoming by depicting changes simultaneously at the intensive and extensive margins which motivates the implementation into CGEBox discussed in here. The logic of the Melitz model is that actions that facilitate trade will raise both export variety and average productivity.

### 3.11.4 Implementation of Melitz model into CGEBox

The standard GTAP model (Hertel 1997), developed by the Centre for Global Trade Analysis is a global, multi-regional, comparative static CGE based on neoclassical assumptions and equilibrium conditions that follow Walras’ law. Policies are depicted by fixed relative price wedges. The model and variants thereof are the most widely used tools for the ex-ante analysis of economy-wide trade effects of multilateral or bilateral trade agreements. Based on a modified Cobb-Douglas Utility function, national income in each region is allocated among three types of final aggregate demand agents, namely government, private households, and savings. Each aggregate agent features its own Armington composite of domestic produce and aggregate imports for each product category, while the aggregate import composition for each product category is determined by a shared second Armington nest which also encompasses intermediate demand. Final demand expenditures on the aggregated Armington commodities reflect utility maximization, in the case of the representative private household drawing on a non-homothetic constant difference of elasticity expenditure (CDE) function;

\(^9\) Eaton et al. (2004) and Hillberry and Hummels (2008) defines the role of extensive margin in terms of firms serving a market while Hummels and Klenow (2005) and Broda and Weinstein (2006) identify the extensive margin in terms of the role of change in the number of products a firm trades or in the number of its trade partners (countries).
in case of the government and investment agents based on constant elasticity of substitution (CES) utility function. Markets are assumed competitive.

Production in each country and all sectors assumes a constant return to scale technology drawing on nested CES functions. In the standard GTAP model, the top level nest is a Leontief aggregate of value added and intermediate input use; the composition of the latter is based on fixed physical input coefficients. The value added nest allows for substitution between primary factors. As for the final demand agents, each sector features its own Armington nest to determine the composition of intermediate input demand for each commodity from domestic product and imports. The import composition is however identical across sectors and final demand, as mentioned above. Primary factors can either be assumed to be perfectly mobile across sectors such that the law of one price holds, or can be treated as “sluggish” based on Constant elasticity of transformation (CET) specification such that return to factors can differ between sectors.

In the standard GTAP framework, saving and capital is determined endogenously through a fictitious Global Bank. The Global Bank allocates investment across regions such that it equates the changes in the expected returns across countries. In the model, ad-valorem wedges can depict policy induces impacts on product price at the level of production, export, import and final consumption. The FOB (free on board) prices are differentiated by exporter and hence reflect bi-lateral export taxes or subsidies, adding international transport margins defines the CIF (cost, insurance and freight price) for each importer to which import taxes or subsidies are added. That allows for a rather detailed analysis of trade policy.

We now turn to the implementation of the Melitz (2003) model into the CGEBox version developed by Ver Mensbrugghe and Britz (2015). The model’s equations are written in levels, and not as a mix of equations in levels and in linearized relative differences as found in GEMPACK based CGE implementations. That CGEBox version allows for an exact replica of the standard GEMPACK version as developed by Hertel (1997). However, based on a flexible and modular code structure, it can also accommodate different assumptions of which we mention only some important ones. On the production side, non-diagonal make matrices, potentially combined with a CET approach are possible, while a flexible nesting approach allows more complex CES nests such as e.g. found in GTAP-AGR and GTAP-E. The Armington nests can be combined with a two-stage CET approach which allows for price dependent supply changes in with regard to the shares of domestic sales and total exports, respectively bi-lateral exports. The model can also be used in recursive-dynamic fashion. In the following, we only refer to the standard GTAP replica.

The actual implementation of the Melitz model into CGEBox draws to a large extent on the empirical method by Balistreri and Rutherford (hereafter BR) (2013) to introduce the Melitz (2003) model into an applied equilibrium model. Differences are detailed below. Further, we show how the Melitz structure compares to the Armington one. In our equation structure, sectors either are based on the standard representation, i.e. a two stage Armington structure on the demand side combined with constant return to scale industries, or follow the Melitz model with monopolistic composition and a different demand representation as detailed next.

---

10 Tom Rutherford provides since a long time a GAMS based implementation of a CGE called GTAPinGAMS which however differs somewhat to the standard GTAP model. The M-B implementation is coded in Dervis et al. (1982) tradition and departs significantly from the nomenclature used by Rutherford and that used by in the GEMPACK version of the model.
The monopolistic competition sectors draw strictly on the framework of Melitz (2003): each firm produces one single unique variety over a continuum of varieties under conditions of monopolistic competition arising from imperfect substitution in demand for these varieties. Accordingly, the number of varieties produced in a regional industry is equal to the number of firms operating. New firms can freely enter an industry by paying a fixed entry cost which is thereafter sunk. However, before a firm enters, it is uncertain about its productivity level which becomes known once the sunk entry cost is paid. That productivity level is determined by a draw from a given productivity distribution. Once a firm knows its productivity level, it will only operate on those trade links, i.e. serving the domestic market or a specific export destination, where its profits are positive. The latter are defined as totals sales revenues on a trade link minus the bilateral fixed cost of trade plus per unit variable cost times sales quantity, the per unit variable cost are assumed to be independent from the output level and the trade link. All firms face the same bilateral fixed cost on each link; however these costs differ across the trade links. Accordingly, the individual firms’ decision to operate on a specific link depends on its productivity level which determines per unit variable cost. At given fixed costs of bi-lateral trade, given potential demand for an additional variety on a trade link and the price received for it, there is hence a cut-off productivity level beyond which profits become negative.

Those firms which draw a productivity level higher than that zero-profit cutoff productivity will operate on the trade link and those below the cutoff level will not. The firm with the productivity level equal to the cut off level is called the marginal firm and faces zero profits on that link; all other firms operating on that link make positive ones. A reduction in bi-lateral fixed cost of trade or higher demand, for instance from trade liberalization, opens hence a window of opportunity for less productive firms to serve new trade links which benefits consumer by providing more diversity in the product bundle imported from a specific origin.

There is no restriction on the number of markets that each firm can serve. The same firm is typically not active on all trade links as they differ in fixed bilateral cost of trade. Since serving the domestic markets requires lower bilateral (here country to same country) fixed cost, the more productive firms participate in export markets. Considering that intra-industry differentiation allows to depict impacts of trade policy changes on captured in conventional trade models where a trade policy leads only to re-allocation of resources between industries. In firm heterogeneity models however, a trade policy induces additionally re-allocation of resources within each industry. Firms can expand their market shares by absorbing resources of less productive ones forced to exit.

In these models, a policy that reduces the worldwide barriers to trade thus increases profits that existing exporters can earn in foreign markets and reduces the export productivity cutoff above which firms export. Input demand within the industry rises, due both to expansion by existing exporters and to new firms beginning to export. The increase in input demand bids up factor prices and reduces the profits of non-exporters. Reduction in profits in the domestic market induces some low productivity firms who were previously marginal to exit the industry. As low productivity firms exit and output and production factors are reallocated towards higher-productivity firms, average industry productivity rises.

Comparing the constant returns-to-scale sectors in the standard GTAP model to the monopolistic competition sector in Melitz reveals three main differences. First, the standard GTAP model is an aggregate industry level framework capturing the behavior of a representative firm in a perfectly competitive industry. In opposite to that, firms face fixed cost of entry in the monopolistic competition framework which leads to increasing return to scale. Second, the standard GTAP model with one
representative firm in each industry cannot reflect productivity differences as depicted in the Melitz model. Third, in the standard GTAP model, consumer’s utility is defined by an Armington composite of goods from different origins, while in monopolistic completion models it is defined over the Dixit-Stiglitz (1977) composite of varieties differentiated by origin which allows for monopolistic competition between firms operating on the same trade link. The combination of these differences allows depicting the extensive margin of trade in CGE models with firm heterogeneity.

**Algebraic representation of the firm heterogeneity into the GTAP model**

This section presents an algebraic representation of the implementation of the Melitz (2003) model as implemented in CGEBox. Note that the equations in GAMS code are documented above in section “Melitz model”. The Melitz framework focuses on intra-industry differentiation where each firm produces a single unique variety. However, data at the firm level are limited and applied equilibrium models work at rather aggregate industry levels. Fortunately, Melitz offers a numerical framework build around (marginal changes of) the average firm operating on a trade link. That average firm’s productivity comprises all necessary information on the distribution of productivity levels of firms active on that link. That vastly eases the model’s implementation by effectively eliminating any data needs at individual firm level as detailed below. Against the background of that definition of an average firm on each trade link, we now focus on the formulation of an empirically computable version of Melitz model and its linkages with the GTAP model.

Assume that a representative agent a (private households, government, investors, intermediate inputs by the different firms) in region s obtains utility $U_{ais}$ from consumption of the range of differentiated varieties of product $i$. Considering the constant elasticity of substitution (CES) utility function as proposed by Dixit and Stiglitz (1997), the aggregate demand by each agent a for commodity $i$ in region s ($Q_{ais}$) which is equivalent to utility ($Q_{ais} \equiv U_{ais}$) can be represented as

$$Q_{ais} = \left( \sum_r \int_{\omega \in \Omega_{irs}} \lambda_{airs} \frac{1}{\sigma_i} Q_{airs}(\omega) \left( \frac{\sigma_i - 1}{\sigma_i} \right) d\omega \right)^{1/1-\sigma_i}$$

(1)

where $\Omega_{irs}$ represents the set of products $i$ sourced from region $r$ to $s$ and $\omega \in \Omega_{irs}$ index the varieties in the set $\Omega_{irs}$. In this context, $Q_{airs}(\omega)$ represents the demand quantity of commodity $i$ for variety $\omega$ in region $s$ by agent a which is sourced from region $r$, $\sigma_i$ represents the constant elasticity of substitution for each commodity, and $\lambda_{airs}$ are preference weights (share parameters)\(^{11}\) which reflect differences between origins not linked to diversity in varieties. Note that substitution elasticities might be differentiated by destination region $s$, but are uniform across agents in each region in our implementation.

The resulting CES unit expenditure function which is the dual price index on Dixit-Stiglitz composite demand in region s ($P_{ais}$) is given by

$$P_{ais} = \left( \sum_r \int_{\omega \in \Omega_{irs}} \lambda_{airs} PA_{airs}(\omega)^{1-\sigma_i} d\omega \right)^{1/(1-\sigma_i)}$$

(2)

\(^{11}\) The reader should note that the share parameters are absent in the original Melitz paper. We hence allow here a differentiation between products from different origins as in the Armington model in addition to the love of variety effect.

168
where $P_{a\text{irs}}(\omega)$ is agent’s a (purchase) price of product $i$ for variety $\omega$ in region $s$ sourced from region $r$. Using the aggregate price index in Melitz (2003) based on his definition of the average firm and considering that varieties do not differ in their marginal utility for the first unit, one can define the price index as equivalent to the dual price defined in (2)

$$P_{ais} = \left( \sum_r \lambda_{air} n_{irs} \bar{P}_{air}^{1-\sigma_{is}} \right)^{1/(1-\sigma_{is})}$$

(3)

where $\bar{P}_{air}$ denotes the agent price inclusive of export, import and consumption taxes for the average firm, and $n_{irs}$ refers to the number of firms operating on the trade link $r-s$. Note that consistent with Melitz (2003), there is a one to one mapping between firms and varieties such that the number of firms is equal to the number of varieties on each trade link. Comparing to (2), which is based on the individual varieties, (3) summarizes the compositional change, i.e. change in the number of varieties which go along with an update of the average price. Note again that we assume the same substitution elasticities across agents.

The total ($Q_{air}$) and average per firm ($\bar{Q}_{air}$) demand for the average variety by an agent to be shipped from $r$ to $s$ ($\bar{Q}_{air}$) can be obtained by applying Shephard’s Lema on the expenditure function:

$$Q_{air} = \bar{Q}_{air} n_{irs} = \lambda_{air} n_{irs} Q_{ais} \left( \frac{P_{ais}}{\bar{P}_{air}} \right)^{\sigma_{is}}$$

(4)

Which reveals the main differences to a standard Armington composite: the share parameters vary with the number of operating firms, i.e. the number of varieties comprised in the bilateral trade bundles. As the agent demand for the average firm’s output in region $r$ in each industry $i$ in region $s$ ($Q_{air}$) depends on the aggregate regional demand for that industry $Q_{ais}$, we need to determine this in equilibrium for each agent. In other word, we need to determine the demand for use of $i$ as an intermediate input and as final demand for household consumption, government consumption, investment, and for international transport margins. In the standard GTAP model, each agent has a specific preference function which determines the demand for her Armington commodity; the government and saving sector based CES preferences while households used a CDE indirect demand function. The Armington demand for each agent and commodity is then decomposed into a domestic and import component in a first Armington nest. The second one decomposes import demand by each region by origin, independent of the agent.

The implementation of the Melitz model thus simplifies the demand structure present in the standard GTAP model by aggregating the two Armington nests into a single one, however, note that the GTAP data base so far does not differentiate in the SAM bi-lateral flows by agent. We hence used the same shares by origin to split up import demand for the different agents.

Assume a small profit maximizing firm facing the constant elasticity of demand according to (4) for its variety. Based on the assumption of the large group monopolistic competition, firms will not consider its impact on the average price index and therefore follow the usual markup rule to translate their marginal cost of production to the optimal price.

169
Firms in Melitz (2003) face different types of cost: sunk fixed cost of entry $f_{ir}$, fixed cost of operating on a trade link $f_{irs}$ and marginal cost $c_{ir}$. Let $\varphi_{irs}$ indicate the firm’s specific productivity which measures the amount of “variable composite unit” needed per unit of output $Q_{irs}$. Accordingly, the marginal cost per unit is the amount of “composite input” required per $\left(\frac{1}{\varphi_{irs}}\right)$ times the unit cost of the “variable composite input” ($c_{ir}$) in industry $i$ of region $r$. Therefore, a firm wishing to supply $Q_{irs}$ units from region $r$ to $s$ employs ($f_{irs} + \frac{Q_{irs}}{\varphi_{irs}}$) units of “variable composite input”. Let, $\tau_{irs}$ denote the fixed iceberg cost of trade which represent domestic production costs, and not the international trade margins present in GTAP. Focusing on the average firm with a productivity $\varphi_{\tilde{s}}$ operating on a trade link, and solving the firm’s profit maximization problem, the price charged by the average firm in region $r$ to supply region $s$ $\bar{P}_{F_{irs}}$ (inclusive of domestic transport margin) is

$$\bar{P}_{F_{irs}} = \frac{\sigma_{is} - 1}{\sigma_{is}} \tau_{irs} \frac{c_{ir}}{\bar{\varphi}_{irs}}$$

where $\frac{\sigma_{is}}{\sigma_{is} - 1}$ represents the constant markup ratio in industry $i$ which reflects market power due to product differentiation into varieties. The linkages between the firm and agent prices are provided in Appendix 1.

The average price in (5) depends hence on the price of variable composite input $c_{ir}$, which is a function of the price of intermediates and primary factors. Given the assumption of constant return to scale and the way technology is presented in the standard GTAP model, the unit cost function for sector $i$ in region $r$ $c_{is}$ in GTAP is given by the Leontief composite of the value added bundle (CES aggregate of factors of production) and the aggregate of intermediate demand (Leontief aggregate of intermediate demands). In the CGEBox, $m_{px}$ is a macro defined as producer price which constitute per unit costs corrected for production taxes. To be consistent with our Melitz formulation, the unit cost inclusive of production tax is directly introduced in the markup equation (5). It should be emphasized that the presence of fixed cost in the Melitz model is the source of increasing returns to scale in a monopolistically competitive industry: if firms expand production, the fixed cost can be distributed over a larger outputs such that per unit cost decrease.

While observed data on quantities traded and related prices allow identifying the necessary attributes on the average firm, additional information is needed to gain information about the marginal firm, i.e. the firm which earns zero profit. Obviously, the distance in productivity between the average and marginal firm reflects properties of the underlying distribution. We rely here on a Pareto Productivity distribution which has analytical tractability (Chaney, 2008) and was shown as empirically relevant (Axtell, 2001; Luttmer, 2002; Gabaix, 2008; Eaton et al., 2001).

Let $M_{r}$ indicate the number of firms choosing to incur the fixed entry cost, i.e. total industry size, each individual firm receives its productivity $\varphi$ draws from a Pareto distribution with Probability Density Function (PDF)

$$g(\varphi) = a \left( \frac{b^a}{\varphi^{a+1}} \right) = \frac{a}{\varphi} \left( \frac{b}{\varphi} \right)^a$$

and Cumulative Distribution Function (CDF)
\[ G(\varphi) = 1 - \left( \frac{b}{\varphi} \right)^{a} \]  

(7)

where \( b \) is the minimum productivity and \( a \) is a shape parameter. Lower values of the shape parameter imply higher productivity dispersion among firms. As discussed in Melitz (2003), \( a > \sigma_i - 1 \) should be applied in order to ensure a finite average productivity level in the industry.

On each bilateral trade link, the given the fixed bilateral trade cost, variable costs and demand define jointly a certain cut off productivity level \((\varphi_{rs}^*)\) at which firms will receive zero profit. A firm which has drawn the productivity equal to that threshold level \((\varphi_{rs} = \varphi_{rs}^*)\) will hence face zero profits and act as the marginal firm from region \( r \) supplying \( s \). Those firm whose productivity is above the threshold level \((\varphi_{rs} > \varphi_{rs}^*)\) will receive a positive profit and will operate on the \( r - s \) link and those firm whose productivity is below the threshold level \((\varphi_{rs} < \varphi_{rs}^*)\) will not operate on the \( r - s \) link.

Focusing on the fixed operating cost \( f_{irs} \) in composite input units, the marginal firm on \( r\)-\( s \) link receives zero profit at

\[ c_{ir} f_{irs} = \frac{r(\varphi_{irs}^*)}{\sigma_i} \]  

(8)

where \( r(\varphi_{irs}^*) = p(\varphi_{irs}^*) \) denotes the revenue of marginal firm at the productivity equal to the cut off level \((\varphi_{irs} = \varphi_{irs}^*)\).

The zero cut off productivity level in each bilateral market \( \varphi_{irs}^* \) can be obtained by solving (8). However, it is numerically easier to define this condition in terms of the average rather than the marginal firm. To do this, we define the productivity and revenue of the average firm relative to that of the marginal firm.

The average productivity in a trade link is determined by the productivity level of the operating firms on that link which by definition are at or above the cutoff productivity level. Following Melitz (2003), that average productivity is defined as the CES aggregation of productivities of all firms operating on a given trade link

\[ \bar{\varphi}_{irs} = \left[ \frac{1}{1 - G(\varphi_{irs}^*)} \int_{\varphi_{irs}^*}^{\varphi_{irs}} g(\varphi) \, d\varphi \right]^{1/(1 - \sigma_i)} \]  

(9)

If these productivities are Pareto distributed, we can write

\[ \bar{\varphi}_{irs} = \left[ \frac{a}{(a + 1 - \sigma_i)^*} \right]^{1/(1 - \sigma_i)} \varphi_{irs}^* \]  

(10)

12 One could use industry specific shape parameter \((a_i)\) given the availability of data at sectoral level. In this study we assume that all firms entering in different industries draw their productivity from the Pareto distribution function with same characteristics (i.e. same scale and shape parameter).
Eq. (10) provides the relationship between the productivities of the average and marginal firm (for further details see Allen and Arkolakis (2016).

Using optimal firm pricing according to (5) and given the input technology, the ratio of revenues of the firms with marginal productivity $r_{irs}(\varphi^*)$ in relation to the revenue of the firm with the average productivity $r_{irs}(\bar{\varphi})$ is defined as

$$\frac{r_{irs}(\varphi^*)}{r_{irs}(\bar{\varphi})} = (\frac{\varphi^*}{\bar{\varphi}})^{\sigma_i}$$

Solving (10) for $\frac{\varphi^*}{\bar{\varphi}}$, substituting it into (11), and then solving the resulting equation for $r_{irs}(\varphi^*)$ and replacing its value in (8), defines a relation between the bilateral fixed cost at current composite input price (the left hand side of (12) below), the average firm’s revenue ($PF_{irs} \bar{Q}_{irs}$), the shape parameter of the Pareto distribution of the productivities and the substitution elasticity of demand:

$$c_{ir}f_{irs} = \frac{(a + 1 - \sigma_{is})}{a\sigma_{is}} PF_{irs} \bar{Q}_{irs}$$

Note that average firm’s sale in region $r$ in each industry $i$ to region $s$ ($\bar{Q}_{irs}$) at the equilibrium is composed of the demand for use of $i$ by different agents\(^\text{13}\).

The optimal pricing in the markup equation (5) requires information on the average productivity on each bilateral trade link. In Melitz (2003), the probability that a firm will operate is $1 - G(\varphi_{irs})$ which is equal to the fraction of operating firms over total number of firms choosing to draw their productivity ($\frac{N_{irs}}{M_{ir}}$). Using the Pareto cumulative distribution function (7) and inverting it we have

$$\varphi^*_{irs} = \frac{b}{\left(\frac{N_{irs}}{M_{ir}}\right)^{\frac{1}{a}}}$$

substituting (13) into (10) results in

$$\tilde{\varphi}_{irs} = b \left[\frac{a}{a + 1 - \sigma_{is}}\right]^{\frac{1}{1 - \sigma_{is}}} \left(\frac{M_{ir}}{N_{irs}}\right)^{\frac{1}{a}}$$

Next, the number of firms selecting to enter the market $M_{ir}$ is determined. Based on the free entry condition, the last firm which enters has expected profits over its life time which just offset the sunk cost of entry. Industry entry of a firm requires a one-time payment of $f^{ie}$. An entered firm faces a probability of $\delta$ in each future period to suffer a shock which forces its exit. Therefore, $\delta M_{ir}$ firms are lost in each period. Based on Melitz (2003), in a stationary equilibrium, the number of aggregate variables must remain constant over time, including industry size. This requires that the number of new entrants in every period is equal to the number of firms lost $\delta M_{ir}$. Therefore, total entry cost is equal to $c_{ir} \delta M_{ir} f^{ie}$. Each firm faces the same expected share on that cost, i.e. $c_{ir} \delta f^{ie}$ if risk neutral.

\(^{13}\) $\bar{Q}_{irs} = \sum \tilde{Q}_{airs}$
behavior and no time discounting is assumed. The firm’s expected share on entry costs must be equal to the flow of expected profit on the condition that firm will operate.

$$\tilde{\pi}_{irs} = \frac{\overline{PF}_{irs} \tilde{Q}_{irs}}{\sigma_{is}} - c_{ir}f_{irs} \quad (15)$$

The probability that a firm will operate on the r-s trade link is given by the ratio of \(\frac{M_{ir}}{N_{ir}}\). Thus, the free entry condition ensures that the expected industry profits, i.e. the profits summed up over all potential bilateral trade links, is equal to the annualized flow of the fixed costs of entry

$$c_{ir} \delta f^{le} M_{r} = \sum_{s} N_{irs} \overline{PF}_{irs} \tilde{Q}_{irs} \frac{\sigma_{is} - 1}{a\sigma_{is}} \quad (16)$$

where zero profit condition (12) is used to replace the fixed operating cost \(c_{ir}f_{irs}\).

With the number of entered firm established in (16), we now turn to total composite input demand of the industry \(Y\) which consists of three components: sunk entry costs of all entrants (\(\delta M_{ir} f^{le}\)), operating fixed cost (\(\sum_{s} N_{irs} f_{irs}\)) on each trade link and variable costs (\(\sum_{s} N_{irs} \frac{\tau_{irs}}{\bar{q}_{irs}}\)). Therefore, composite input demand is defined as

$$Y_{ir} = \delta M_{ir} f^{le} + \sum_{s} N_{irs} (f_{irs} + \frac{\tau_{irs}}{\bar{q}_{irs}}) \quad (17)$$

This equation provides the link to the equations in the GTAP model describing the technology and related costs. Table 16 summarizes full set of Melitz equations which are introduced into the GTAP model.

Table 16: Equilibrium conditions in the Heterogenous Firm model

<table>
<thead>
<tr>
<th>Equation</th>
<th>Equilibrium condition</th>
<th>Associated variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>Sectoral Aggregation</td>
<td>(P_{is}): Sectoral price index</td>
</tr>
<tr>
<td>(4)</td>
<td>Firm-level demand</td>
<td>(\overline{PF}_{irs}): Average firm price</td>
</tr>
<tr>
<td>(5)</td>
<td>Firm-level Pricing</td>
<td>(\tilde{Q}_{irs}): Average firm quantity</td>
</tr>
<tr>
<td>(12)</td>
<td>Zero cut off condition</td>
<td>(M_{ir}): Number of operating firms</td>
</tr>
<tr>
<td>(14)</td>
<td>CES Weighted Average</td>
<td>(N_{ir}): Average firm productivity</td>
</tr>
</tbody>
</table>

\(^{14}\) The probability that the firm will operate is \(1 - G(\varphi_{irs}^{*}) = \frac{N_{ir}}{M_{ir}}\)
Variables through which Melitz model is linked to the GTAP

- \( Q_{ais} \): Sectoral Demand
- \( c_{ir} \): Price of composite input
- \( Y_{ir} \): Sectoral composite input demand

**Calibration of the model**

In order to apply the above equation structure, the different parameters must be chosen such as to recover an observed benchmark. That benchmark consists of the global SAM provided by the GTAP database against which the remaining equations of the GTAP model are calibrated as well. It comprises values on domestic sales and on bilateral international trade expressed in USD million for each sector and region which are key data in the context of the Melitz module discussed above. Global detailed SAMs comprise many small entries both in relative and absolute terms which can affect the numerical stability during solution of a CGE. We therefore recommend filtering out in a systematic way small transactions in relative terms from the database when using the model with many sectors and regions, following by rebalancing the global SAM (see Britz and Van der Mensbrugghe 2016).

We focus here mainly on the calibration of the firm heterogeneity module while the calibration of Armington sectors are similar to the standard GTAP model and are not further discussed. In the following, a superscript “0” denotes a benchmark value, for instance, \( Q^0_{is} \) denotes the benchmark value of demand for commodity \( i \) in region \( s \). In order to line up the variables in the Melitz module with the SAM, the following identities must hold:

\[
\begin{align*}
    c^0_{ir} & \equiv \frac{vom_{ir}}{Y^0_{ir}} & (18) \\
    P^0_{is} Q^0_{ais} & \equiv xaf_{ais} & (19)
\end{align*}
\]

where \( vom_{ir} \), represent the production value of commodity \( i \) in region \( r \) at producer tax inclusive prices and \( xaf_{ais} \), represent the value of each agent’s a demand for commodity \( i \) in region \( s \), consumer tax inclusive. The first identity indicates that the cost of input supply must equal the value of output, and the second identity ensures that demand for all goods and factors is equal to supply at the benchmark. Accordingly, using the conventional choice of unity prices, i.e. \( P^0_{irs} = 1 \), and \( c^0_{irs} \equiv 1 \), total quantity demanded \( Q^0_{is} \) and total input supplied \( Y^0_{ir} \) is locked down.

---

\( ^{15} \) We currently use the GTAP9 Data Base which carries a snapshot of the 2011 world economy, covering 140 regions (aggregate of 226 countries) and 57 sectors. But all GTAP Data Bases share the basic structure such that the code can also be used with other releases.
It should be noted here again that the bilateral import demand in the SAM is aggregated over agents. The RHS entries in equation (19) above are hence constructed by splitting up that total by each agent’s share on total imports.

Given the agents’ demand for each commodity $Q_{iais}^0$ and using the definition of the firm average in Melitz, we have

$$Q_{iais}^0 = \sum_r Q_{airs}^0 = \sum_r \bar{Q}_{airs}^0 N_{irs}^0 . \quad (20)$$

We now briefly compare the demand side based on the Armington assumption with the Melitz model to demonstrate that the choice of $N_{irs}^0$ does not matter for the model’s simulation behavior. Under the Armington assumption, a CES utility function is used to differentiate between origins. That implies that the (average) quality on the trade links can differ along with the price. As the resulting demand function is homothetic, expenditure shares are independent of the income level and solely depend on relative prices for these qualities. Conveniently, calibration is performed at given substitution elasticities by choosing share parameters such that given expenditure shares are recovered at given relative prices.

The Ditz-Stieglitz price index used in the Melitz (2003) is also based on a CES utility function; however, here we have a continuum of varieties. As share parameters are absent in the original model, the marginal utility of the first unit for each variety is the same. Each firm is assumed to produce its own variety and multiple firms are allowed to operate on a trade link. Thus, more firms imply more varieties and a higher utility per unit of traded output on that link. Total demand on a link is hence defined as the product of average output per operating firm and the number of firms operating on that link. Recovering expenditures shares at given prices for each trade link can hence be based either by deriving the number of firms on a link at given average firm output on that link or by pre-selecting the number of firms for each link and deriving average outputs. Share parameters are not needed; however, as a consequence, the resulting price index cannot be controlled. As only relative prices matter, that only affects readability and not simulation behavior.

In order to improve readability and provide a combined interpretation of the two models, we introduce share parameters in the CES-demand function used in the Melitz model. That allows a convenient interpretation of the extension introduced by the Melitz model: changes in the number of firms lead to preference shifts in the Armington model as they update the share parameters. The resulting price index $P_{ais}$ and matching demands $\bar{Q}_{airs}$ for product $i$ in region $s$ from origins $r$ by agent $a$ can be depicted as

$$P_{ais}^0 = \left( \sum_r \lambda_{airs} \frac{N_{irs}^0}{N_{irs}^0} \bar{P}_{airs}^0 \frac{1}{1-\sigma_{is}} \right)^{\frac{1}{1-\sigma_{is}}} \quad (21)$$

$$Q_{airs}^0 = \lambda_{airs} \frac{N_{irs}^0}{N_{irs}^0} \frac{Q_{ais}^0}{\bar{P}_{airs}^0} . \quad (22)$$

where $N_{irs}$ depicts the number of operating firms on a trade link. Note that, as $N_{irs}$ and $\lambda_{airs}$ (the share parameter) are identical in the calibration point, we scale without any impact on the simulation behavior the lambdas $\lambda_{irs}$ such that the price index $P_{ais}$ $\equiv 1$ (or something else) at the benchmark. That allows to recover any given quantity index $Q_{ais}$ and matching $P_{ais}$. 

175
Equations 21 and 22 show the link between the Armington and Melitz models. A given Armington model can hence be simply extended by adding changes in the number of operating firms. With the choice of $\tilde{P}_a^0 = 1$, $p^0_{ais} = 1$, once we now have the observed value of $Q^0_{airs}$, $Q^0_{ais}$, and estimated value $\sigma_{is}$, the value of $\lambda_{airs}$ is calibrated in a way that we do not need the information on the benchmark number of firms. Accordingly, the values of $\lambda_{airs}$ are recovered by inverting the demand functions.

$$\lambda_{airs} = \frac{Q^0_{airs}}{\tilde{Q}^0_{airs}} \left( \frac{\tilde{P}_a^0}{p^0_{airs}} \right)^{\sigma_{is}}$$

(23)

Let $\tilde{P}_{irs}$ denote the average firm’s offer price on a specific trade link, from which $\tilde{P}_{airs}$ is derived by considering export taxes (to arrive at cif), international transport margins (to arrive at fob), and import and consumption taxes. The composite input demand linked to bilateral fixed cost $f_{irs}$ is derived from the zero-profit cut off condition, where the values of $c_{ir}^0$ and $\tilde{P}_{irs}^0$ are set to unity at the benchmark, and $\tilde{Q}_{irs}$ is estimated from (23), and the value of shape parameter $\alpha$ is taken from literature:

$$f_{irs} = \frac{\tilde{P}_{irs}^0 \tilde{Q}_{irs}^0 (a + 1 - \sigma_{i})}{a \sigma_{i}}$$

(24)

Please note that $Q^0_{irs} = \tilde{Q}_{irs}^0 N_{irs}$ implies that changing the number of firms at the benchmark updates $f_{irs}$, but not the total industry cost linked to bi-lateral fixed cost. Similarly, the free entry condition allows deriving the composite input demand of sunk entry cost $c_{ir} \delta f^{16}$ at given price and quantity of the average firm.

---

16 In GTAP the first level Armington demand for each agent $XA_{ih}, XA_{igov}, XA_{inv}$ is a CES composite of domestic and aggregate imported good with the substitution elasticity $\sigma_m$; and the second level Armington demand (aggregated import) is a CES composite of import demand by each region of origin with the substitution elasticity of $\sigma_w$. However, in Melitz structure represented consume has Dixit–Stiglitz preferences over the varieties including domestically produced commodities and imported commodities by source of origin with the substitution elasticity of $\sigma_i$. To be consistent with Dixit–Stiglitz framework, $\sigma_i$ is derived based on the weighted average of the substitution elasticities of first and second level Armington nests where the weights given to $\sigma_m$ and $\sigma_w$ are domestic and import purchases at agent price, respectively. We also insured that derived substitution elasticity is smaller than $a + 1$ to ensure a finite average productivity level in the industry.

17 Estimates of the value shape parameter vary and are conditional on a choice of elasticity of substitution. The choices of shape parameter and substitution elasticity are important as these key parameters have significant implications (for example on welfare). The importance of these variables is well discussed in Akgul et al. (2015, 2016) and Dixit (2016). Bernard et al. (2007) choose a shape parameter equal to 3.4, and estimates of Eaton et al. (2004) show $a = 4.2$, while Balisteri et al. (2011) find shape parameter of 5.17, 4.58 and 3.92 depending on different trade cost-distance elasticities but under the maintained assumption that $\sigma = 3.8$. Akgul (2016) calibrated shape parameter of 2.89 for manufacturing sector consistent with a shape parameter obtained Spearot (2016). In this study we used the weighted average of the substitution elasticities of first and second level Armington nests which is not necessary consistent with the shape parameter (4.6) which is taken from Balisteri et al. (2011). Once decided which sectors are treated as sectors with heterogeneous firms, the theoretically consistent sectoral elasticity of substitution and sectoral shape parameter should be obtained. The minimum productivity parameter is chosen as $b = 0.2$ following Balisteri et al. (2011) from Bernard et al. (2007).
\begin{align}
  c_{ir} \delta_{f}^{ie} &= \sum_{s} \frac{N_{irs}^0}{M_r^0} \widehat{P}_{irs}^0 \widehat{Q}_{irs}^0 \frac{\sigma_{is} - 1}{\alpha_{is}} = \sum_{s} \frac{1}{M_r^0} \widehat{P}_{irs}^0 \mathcal{G}_{irs}^0 \frac{\sigma_{is} - 1}{\alpha_{is}} \tag{25}
\end{align}

Note again that the given values on the trade links \( Q_{irs}^0 \) determine together with the chosen industry size the sunk entry costs such that, as above, either the number of operating firms or the average quantities can be chosen without affecting the calibration. Furthermore, the condition reveals that the choice of total industry size \( M_r^0 \) does not matter either, as the sunk entry costs will adjust proportionally such that the industry’s total annualized costs of industry entry solely depend on the shape parameter of the Pareto distribution, the substitution elasticity and the given SAM values.

Next, given a minimum productivity parameter of the Pareto distribution \( b \), the average firm productivity on trade link can be initialized as:

\begin{align}
  \overline{\varphi}_{irs} &= b \left[ \frac{a}{(a + 1 - \sigma_{is})} \right]^{1-\sigma_{is}} \left( \frac{M_r^0}{N_{irs}^0} \right)^{\frac{1}{a}} \tag{26}
\end{align}

Having determined the value of average productivity on each \( r-s \) link, and setting \( c_i \equiv 1 \), \( \widehat{P}_{irs}^0 \equiv 1 \), the domestic input demand related to the transport margin cost can be computed by inverting the mark up equation (5) as follows:

\begin{align}
  \tau_{irs} &= \frac{\sigma_{is} - 1}{\sigma_{is}} \overline{\varphi}_{irs} \tag{27}
\end{align}

Here, it is less obvious why \( M_r^0 \) and \( N_{irs}^0 \) can be freely chosen without affecting simulation behavior. \( \overline{\varphi}_{irs} \) and \( \tau_{irs} \) enter the total industry cost and the price markup equations. Total industry costs on a trade link \( r-s \) are given as: \( N_{irs} \left( f_{irs} + \frac{\tau_{irs} \overline{q}_{irs}}{\overline{\varphi}_{irs}} \right) \) which shows that changes in \( \overline{\varphi}_{irs} \) and \( \tau_{irs} \) resulting from different benchmark values of \( N_{irs} \) and \( M_r \) do not matter. The same holds for the price markup equation: \( \widehat{P}_{irs} = \frac{\sigma_{is} - \tau_{irs} \xi_{irs}}{\sigma_{is} - 1} \overline{\varphi}_{irs} \).

Accordingly, sensitivity analysis with different values for \( M_r^0 \) and \( N_{irs}^0 \) showed no differences in simulated results. However, the choice might affect numerical stability by affecting the overall scaling of the model. In order to improve readability, we have generally chosen \( N_{irs}^0 \equiv 1 \) which gives average firm outputs on each trade link equal to given bi-lateral respectively domestic sales values at benchmark prices.

**Technology nesting**

Similar to Zeynep et al. 2016 in their GTAP-HET model, we apply a different nesting for variable costs of trade and the fixed costs related to industry entry and operating on a link. The variable costs maintain whatever nesting is chosen originally by the analyst. The fix cost only use fixed value added, applying the same substitution elasticity as used for the value added nest in the original model. Note that this is a first implementation which should be improved as it implies for industries using land or natural resources that they also become part of the fixed costs. Technically, the flexible nesting structure by CGEBox is applied by defining a new technology nest termed “fcost”. At the same time, the implementation of the nesting was extended to allow for the case that several nests demand the
same intermediate input or factor. Alternatively, the model can be simplified to use the same composite input for variable and fixed costs. The implementation allows combining the default Melitz model with its differentiation between variable and fixed costs composites with other nesting structures on the production side such as the implementation of GTAE-E or GTAP-AGR realized as modules of CGEBox.

### 3.11.5 Numerical stability and domestic industry demand for its own output

Test runs with the model in different configurations with regard to sectoral and regional detail as well as differently deep multi-lateral trade liberalization shocks have consistently shown non-stable behavior resulting in infeasibilities in cases where an industry’s cost share of domestic intermediate input is relatively high, say around 30%. Under these conditions, the model easily ends up in a vicious circle where a cost increase on the domestic link amplifies itself such that corner solutions with zero industry sizes provoke infeasibilities. Changing the parameterization seems to help only in some selected cases.

A firm should not apply mark-up pricing for own produced and used intermediates if that decreases its own competitiveness, i.e. provokes real costs and is not a tax evasion tactic. However, the average firm model does not differentiate domestic intermediate demand inside a sector between a firm’s demand for its own produce and demand by other firms. In order to allow for a numerical stable implementation, we therefore allow excluding domestic intermediate demand for the diagonal I/O element from the love of variety effect, i.e. applying Armington preferences. Accordingly, there is also no markup pricing involved if that option is chosen. That has proven to effectively prevent the down-spiraling solution behavior in most cases. However, it can still happen if a bundle of sectors shows quite high costs share of domestic demand for the same bundle of sectors. In that case, the defense by arguing over the single firm’s behavior is not longer valid.

Potential improvements in that regard could encompass a split up of the diagonal domestic intermediate demand into a share subject to the love of variety assumption and a remainder treated as competitive. But before introducing further complexity into the framework, more testing is required.

### 3.11.6 Technical implementation and an example application

#### Technical implementation

The necessary GAMS code for the calibration of the model can be found in “gams\GTAPMelitz\GTAPMelitz_cal.gms”. Besides the calibration steps discussed above, it is important to mention that certain flags are deleted to ensure that equations in the standard model are inactive for Melitz commodities.

The user can switch the module one on the Graphical User Interface under “Model Structure”:

![Model structure](image)

which generates a new tab with the following input possibilities.
Under Melitz commodities, the commodities / sectors can be chosen the parameter of the Pareto-distribution of the productivities defined.

The checkbox “Only aggregated demand, not heterogenous firms” changes the demand structure of the standard GTAP such that only one Armington nest shared by all agents is present. The substitution elasticity is defined as in the case when the full Melitz model is used. The remaining equations of the Melitz model are absent and replaced by the equations of the standard GTAP model. That allows dis-entangling impacts of the full Melitz model from the structural changes on the demand side.

The checkbox “Fix cost nest” introduces a differentiation between variable and fix costs input composites where the latter only comprises primary factors, at least as long as there is some minimal primary factor cost share left in the variable input composite. The spinner termed “Max cost share of HET domestic intern. demand” allows switching off love of variety for domestic intermediate demand by same industry depending on the costs share. Only sector-regional combinations with a share above the threshold will be excluded. Setting the threshold to unity will hence leave the love of variety effect switch on for all domestic intermediate demand, while zero will switch it off on all cases.

Detail on simulated value of variables found in the Melitz module can be found in two tables under the “Trade group” as shown below:

---

**An example application**

We use a 50% reduction of all imports tariff and export subsidies globally with a 10x10 aggregation of the GTAP9 data base as an example application, focusing on welfare changes and highlighting the newly available information from the model. We compare the standard GTAP model against two variants, one where only the demand structure of the Melitz model is used and a second one with its full implementation.

---

18 Appendix 2 provides the sectoral and regional aggregation of GTAP sectors into the new mapping.
Table 17 below reports the Money metric for the full Melitz model (Tariffs_m), the model where only the demand side of the Melitz model is used (Tariffs_d) and the Standard GTAP model (Tariffs). First, it can be seen that aggregate welfare is almost not affected by choosing the more simple demand side with only one Armington nest shared by all agents. However, results for individual regions show some sensitivity.

As expected, adding the full Melitz model increases welfare, here, it more than quadruples the global welfare impact of multi-lateral trade liberalization. Interestingly, that impact is not uniform across regions: whereas North America suffers a small welfare loss in the standard configuration, it gains under the Melitz model. However, the welfare in Middle East and North Africa is the same under two structures. Generally the results are in line with finding of Balistreri et al. (2011) which also found welfare increases around factor four.

Note that, for our simulation exercise, we compare the welfare impact of the policy shock under different structures where more or less the same value of Armington elasticity is assigned in each structure. Specifically, our calibration code restricts the substitution elasticity to an interval of +/- ½ around the share parameter which for many sectors will yield more or less the same consumption quantity weighted elasticity as found in the two-level Armington system of GTAP.

Dixon et al. (2016) argues that in order to compare the welfare impacts of a policy shock under Armington structure and Melitz structure one should assign the substitution elasticity (σ) in the Armington framework such that it simulated trade flows comparable to a Melitz framework. In the two commodity and two country model of Dixon et al. (2016); a substitution elasticity of 8.45 yielded trade flows similar to a Melitz model with a substitution elasticity of 3.8 when tariff in one of the countries increases by 7.18 percent. Dixon et al. (2016) obtained this equivalent Armington value of substitution using a trial and error approach. The substitution elasticity in an Armington model which yields similar results depends not only on the parameterization of the Melitz model, but also on the type and magnitude of the shock and structure of the model as a whole. Using trial and error to an “equivalent” substitution elasticity to replicate the trade pattern after a given shock can only be used if the model is rather small. However, with a medium sized model, we found that once σ is adjusted in Armington framework to replicate one of the trade flows, the error in other bilateral trade flows might even become larger. Such finding is in line with that of Balistreri et al. (2011). Akgul (2015, 2016), who introduced a theoretically consistent framework from which one can calibrate the sector specific Armington elasticity given the obtained sector specific value of the shape parameter and econometrically estimated results. Given data limitations, we adjust the given Armington elasticities around a uniform Pareto shape parameter across regions and sectors. This assumption remains open to critic and the choices of theoretically consistent substitution elasticities across regions and sectors is
Table 17: Money metric in comparison of Melitz and Standard GTAP model

<table>
<thead>
<tr>
<th>Sectors and Institutions</th>
<th>Total</th>
<th>Tariffs_d</th>
<th>Tariffs_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>44.88</td>
<td>59.89</td>
<td>177.64</td>
</tr>
<tr>
<td>Australia, New Zealand</td>
<td>1.63</td>
<td>1.77</td>
<td>4.23</td>
</tr>
<tr>
<td>East Asia</td>
<td>30.14</td>
<td>31.72</td>
<td>94.15</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>2.97</td>
<td>4.13</td>
<td>12.64</td>
</tr>
<tr>
<td>South Asia</td>
<td>3.08</td>
<td>1.24</td>
<td>10.19</td>
</tr>
<tr>
<td>North America</td>
<td>-3.76</td>
<td>-0.62</td>
<td>10.96</td>
</tr>
<tr>
<td>Latin America</td>
<td>0.80</td>
<td>0.23</td>
<td>5.01</td>
</tr>
<tr>
<td>European Union 25</td>
<td>4.50</td>
<td>9.21</td>
<td>23.52</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
<td>0.53</td>
<td>-0.02</td>
<td>0.52</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>0.68</td>
<td>0.35</td>
<td>1.41</td>
</tr>
<tr>
<td>Rest of World</td>
<td>4.34</td>
<td>2.77</td>
<td>13.60</td>
</tr>
</tbody>
</table>

The next Table 18 shows the simulated overall price index and seems to indicate, as expected, that the Melitz model tends to amplify the impacts found under Armington model.

Table 18: Aggregate price index of the Armington agents

<table>
<thead>
<tr>
<th>Total or household groups</th>
<th>Tariffs_d</th>
<th>Tariffs_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Australia, New Zealand</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>East Asia</td>
<td>0.02%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>South Asia</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>North America</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Latin America</td>
<td>-7.49%</td>
<td>-7.49%</td>
</tr>
<tr>
<td>European Union 25</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Rest of World</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

The impacts on factor income corrected for changes in the overall price index are less clear with more diversified changes across the regions. In an environment with multiple factors, effects on factor prices differ which seems significant in our application.
Table 19: Factor income, corrected with price index aggregate Armington agent

Table 20 below summarizes main variables found in the Melitz module. As indicated in the table, as expected, the total number of firms entered (number of domestic verities) decrease as result of liberalization while the number of operating firm indicating the sum of verities consumed increases.

Table 20: Example summary information from Melitz model

The last Table 21 below details information on each trade link. Note first the impact on the domestic sales: as the firm’s price in the domestic market drops, the number of firms operating on the domestic link is reduced and average productivity and output per firm increases. In opposite to that, the firms prices of selling to “South Asia” increase by almost 1.3% which increases the number of operating firms on that link by 1.12% and let average quantities and productivity drop by about -2.87%. Still, as a result of these effects, export increase by 8.7%.
Table 21: Example information from Melitz model by trade link

<table>
<thead>
<tr>
<th>Exporter, New Zealand</th>
<th>Australia, Rest of world</th>
<th>East Asia</th>
<th>Southeast Asia</th>
<th>South Asia</th>
<th>North America</th>
<th>Latin America</th>
<th>European Union</th>
<th>Middle East and North Africa</th>
<th>Sub-Saharan Africa</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic sales</td>
<td>1.00</td>
</tr>
<tr>
<td>Non-factor inputs</td>
<td>-0.00</td>
</tr>
<tr>
<td>Taxes and subsidies</td>
<td>0.00</td>
</tr>
<tr>
<td>Other items</td>
<td>0.00</td>
</tr>
<tr>
<td>Total output</td>
<td>1.00</td>
</tr>
</tbody>
</table>

3.11.7 Conclusion

While the Armington specification based on regionally differentiated goods provides a popular and robust specification for numerical simulations of trade policy, it fails to explain empirical observations at firm-level in newer international trade literature. Recent models of international trade with heterogeneous firms overcome the limitations of the Armington specification and can at the same time be relatively easy integrated into aggregated equilibrium analysis. That has opened up the opportunity for CGE models to better depict and analyze mechanisms through which productivity and number of varieties impact the extensive margin of trade. This paper discusses an operational implementation of the firm heterogeneity theory of Melitz (2003) into the CGEBox model which addresses the shortcoming of the Armington specification while being relatively simple. It has proven numerically stable at least for medium sized aggregations of the GTAP data base.

Appendix 1: Price linkages

The following section presents the price linkages between firms and agents. Firm’s price $P_{F_{irs}}$ (inclusive of domestic transport margin) is defined as the price received by producers in region $r$ for commodity $i$ to be shipped to the sink region. If the commodity is shipped to the domestic market, the agent (purchase) price is

$$PA_{air,s} = P_{F_{irs}} (1 + \tau^c_{air} + \tau^c_{air})$$  \hspace{1cm} (28)

where $\tau^c_{air}$ denote the consumption (sale) tax on each specific commodity for each agent while $\tau^c_{air}$ is a uniform consumption tax across commodities and/or agents.

If the commodity is shipped to the other region/country, a bilateral export subsidy or tax ($\tau^e_{irs}$) is applied to the firm offer price and determines the free on board (fob) price. An additional tax $\tau^e_{irs}$ is also introduced into (29) representing the uniform export tax across destinations.

$$PF_{F_{irs}} = PM_{irs} (1 + \tau^e_{irs} + \tau^e_{irs})$$  \hspace{1cm} (29)

The FOB price $PF_{F_{irs}}$ is augmented by the international transport margin $t^m_{irs}$ (observed from GTAP and endogenous to the model) to establish the cif (cost –insurance and fright) price:

$$PM_{CIF_{irs}} = PF_{F_{irs}} + t^m_{irs}$$  \hspace{1cm} (30)
The bilateral import tax ($\tau_{irs}$) converts the CIF price into the bilateral import price, and $\sigma_{irs}$ reflect a uniform tax shift across source countries:

$$PM_{irs} = P_{irs}^{CIF} (1 + \tau_{irs} + \sigma_{irs})$$  \hspace{1cm} (31)

and finally the resulting bilateral import prices are converted to the agent prices by adding a consumption tax on imported commodities:

$$PA_{airs} = P_{airs}^{CIF} (1 + \tau_{airs} + \sigma_{airs})$$  \hspace{1cm} (32)

While uniform shift parameters are initially set to zero, the value of all other parameters are observed from GTAP 8 database. Potential users are strongly urged to consult Hertel (1997) and Mensbrugghe (2015).

### 3.11.8 Acknowledgments

Authors would like to thank Thomas W. Hertel, Edward J. Balistreri, and Dominique van der Mensbrugghe for their helpful comments.

### 3.11.9 References


GTAP-Melitz: Heterogenous firm module


Narayanan, G., Badri, Angel Aguia and Robert McDougall, Eds. 2012. Global Trade, Assistance, and Production: The GTAP 8 Data Base, Center for Global Trade Analysis, Purdue University.


3.12 GTAP-AEZ

3.12.1 Summary

The GTAP-AEZ module allows to break land-use in a region to different agro-ecological zones using a multi-tier land-supply approach. The necessary data are available from GTAP and covered by a GTAP database license and need to be added during the data preparation step. The GUI gives limited methodological choice. The exploitation part allows generating global maps which depict land use (changes).

The module draws on Huey-Lin, Incorporating Agro-Ecologically Zoned Land Use Data and Land-based Greenhouse Gases Emissions into the GTAP Framework (https://www.gtap.agecon.purdue.edu/resources/download/2245.pdf) and uses the following logic. Each region (nation, group of nation or NUTS2) in the model is split into agro-ecological zones. The total land use of an activity at regional level is a CES-aggregate of the land use in the different AEZs, i.e. all other costs shares do not differ across the AEZ. In each AEZ, individual land use activities compete for available total managed land which is not fully mobile across individual activities, described by a three-tier CET factor supply system.

Thus, each nation or sub-region is dis-aggregated to different agro-ecological zones (set aez). That relation depicted by the cross-set aezFlag:

```
set aezFlag|r,aez;
```

In each aez, the total endogenous land use is dis-aggregated to the following three top-level land categories:

```
set landCat "Land categories" / forestry,Grazing,Agriculture /;
```

The different activities in the GTAP Data Base are mapped to these to land categories, i.e. forestry comprises managed forest (frs), the grazing categories comprises all land used by animal production activities while agriculture covers all crops.

```
set landCat_a0(landCat,i0) "Map between land categories and activities"/
 forestry,frs,
 Grazing,ctl,cap,rmk,wol
 Agriculture,(set.icrops)
/;
```

The code does not require that the SAM comprises the full detail of activities as defined above, but assigns potentially higher aggregated activities $a$ to the land categories based on the mapping defined above. It however will throw an error if the sectoral aggregation leads to the case where one activity in the SAM would be assigned to multiple land categories as, for instance, in the case where all agricultural activities in the GTAP data base are aggregated.

```
set landCat_a(landCat,a);
landCat_a(landCat,a) $ sum(mapa(i0,a) $ landCat_a0(landCat,i0),1) = YES;
abort $ (sum(landCat_a(landCat,a),1) ne sum(a $ sum(landCat_a(landCat,a),1),1))
 "Not enough detail for agriculture / forestry, several sector assigned to same land category",
 landCat_a;
```
3.12.2 Model equations

The model equations are defined in “gams\GtapAEZ\gatpAez_model.gms”. The implementation differs in five important aspects from the AEZ model as coded in GEMPACK:

1. It comprises a three instead of two-tier CET distribution of total managed land: the upper nest distributes total managed land to forestry and all agricultural uses, the middle nest from all agricultural uses to pasture, i.e. land used in animal, and crop land, i.e. crop activities, and the lowest tier distributes pasture to the different animal activities to crop land to the individual crop activities. The middle tier is not present in the original implementation. The introduction of the additional nest allows making managed forest cover more “sticky” compared to switching between aggregate animal and crop use.


3. Land supply elasticities for the different types of land-cover can be introduced. The current default defines a buffer for economic land based on estimated of the available crop land buffers at national level in conjunction with a land supply elasticity of unity. That has proven to give reasonable results for long-run analysis with G-RDEM and is recommended for production runs.

4. If NUTS2 regions as sub-national regions are present, they are also broken down to individual AEZs.

5. An option restricts the more aggregate land categories from shrinking by introducing bounds. That version has by now been intensively tested and can be used for production runs.

It is hence recommended switching the following to options on. Turning them off renders the module more similar to the AEZ model as implemented in GEMPACK.

The figure below gives an overview on the CET based transformation of the total land stock in a region to the land stock in the different AEZs and from to the four layers.
Total economically used land stock

The model can be used in two variants to depict the total land stock in economic use in each AEZ:

1. The usual factor stock equation with a supply elasticity $etaf$ which is equivalent – leaving the dis-aggregation to AEZs aside - to the factor stock equation in the GTAP standard dmodel. The land stock at the benchmark $xftTopBase$ is updated with the factor supply elasticity $etaf$ applied to the numeraire normalized average returns to land in the region $pft$. In that version, total land use in all AEZs of a region will hence expand or shrink by the same percentage as it driven by regional and not AEZ specific price. If $etaf$ is zero, the equation simply defines a fixed stock.

```
xftTopEq IRS(r,aez,te(t)) $ xftTopBase(r,aez,t) . .
xftTop(r,aez,t)/xftTop.scale(r,aez,t)
= E= (xftTopBase(r,aez,t)
 * sum((r,r(r,rNat),lnd),(pft(r,lnd,t)/ pfact(t))**etaf(rNat,lnd)))/xftTop.scale(r,aez,t);
```

2. A version where land “buffers” are defined in 1000ha along with a land supply elasticity. In the default version, a supply elasticity $landSupplyElas$ is only defined for the category “buffer”. That buffer is AEZ specific and derived from national data on total available crop land (in the file data/landBuffer.gms). The national data are distributed to the AEZs in each...
aggregated region during benchmark using data on savanna, shrubland and other lands, the latter only with 10%.

Note that the original AEZ land data set does not comprise data on unmanaged forest cover. These data had been defined by the difference between the polygon sizes (= total land area) and the given data.

For the case that explicit land supply elasticities are used, the total stock land in an AEZ is defined as follows:

If the land supply elasticity for the category “buffer” is set to zero, one might alternatively also supply land e.g. from savanna or shrubland directly with user chosen elasticities.

The price effect \( p_{ftTopPriceEffect} \) in equation \( xftTopEq \) which drives the share of the land cover area \( landUse(r, aez, land_cover, "ha") \) supplied to land in economic use is defined in two steps. First, a Huber-min approximation (the curious expression after sqrt in the equation \( pftTopPriceEffect1Eq \) below) ensures that this price effect cannot exceed unity, the point where a land cover category supplying land to economic use is completely emptied:

Second, we exclude that land in economic use is converted back into natural vegetation with a Huber-max approximation in the equation \( pftTopPriceEffectEq \):

This version with land supply elasticities is now recommended for production runs.

**Distribution of total land demand from regional to AEZ level**

The land demand \( xftAez \) for each activity in each Agro-Ecological Zone \( aez \) is defined in the equation \( pftAezEq \) based on a CET aggregator:
It uses hence a CES approach, where the relation between average returns for land in the activity at regional level as defined by the macro \( m_{pfa} \) relative to its returns in the AEZ drive the allocation of the activity in space. The returns to land of an activity in the AEZ reflect the specific price net of taxes \( pftAez \) in each \( aez \) plus the nation-wide factor taxes \( fctx \) and subsidies \( fcts \) for land use in that activity. Note the mapping \( r_r(r, rnat) \) which indicates to which nation \( rnat \) a region in the model belongs — it is diagonal in case where no sub-national regions are present. The total to distribute is equal to the total land use of that activity at regional level \( xf \).

The average return \( m_{pfa} \) uses the usual dual price aggregator defined in the equation \( pfaAezEq: \)

\[
\text{pfaAezEq}(rs(t), "land", aIn(a), ts(t)) = \text{sum}(aezFlag(r, aez), \ \text{andAez(r, aez, a, t)}).
\]

\[
p_{ftAez}(r, aez, a, t) = \text{ezFlag(r, aez, a, t)} + \text{fctx(r, aez, a, t)} + \text{fctxShift(r, aez, a, t)}
\]

**Upper tier: managed forest against all type of agricultural land use**

The development of the AEZ model is partly motivated by the aim to account for carbon stock changes from land use change. Using CET formations however implies a non-linear aggregation of land such that the physical balance in hectares from the benchmark cannot be maintained. In order to overcome that limitation we draw on the voluming preserving CET proposed by van der Mensbrugghe & Peters 2016 which maximizes the revenue of a CET aggregator:

\[
\max U = A \times \left( \sum_i g_i(\lambda_i P_i X_i)^\nu \right)^{1/\nu}
\]

under the condition that sum of the \( X \) is fixed to a given volume \( V \), here a physical land stock.

\[
V = \sum_i X_i
\]

That gives the following solutions for the competing land uses \( X_i \) and the dual price aggregator \( P^c \)

\[
X_i = \gamma_i (A \lambda_i)^{\omega} \left( \frac{P_i}{P^c} \right)^{\omega} V
\]

\[
P^c = A \left[ \sum_i \gamma_i (\lambda_i P_i)^{\omega} \right]^{1/\omega}
\]

The price index \( P^c \) is not equal to the average, revenue exhausting price which must be defined in an additional equation, here called \( pftTop: \)
Where: $x_{ftTop}$ is total land use in each aez, $landCat1$ are managed forest and all type of agricultural land use (set landCat1 $|$ landCat) "Land categories" / forestry, Grazing_Agriculture / ), $pftLandCat$ are average returns in the categories and $x_{ftLandCat}$ the related quantities. The distribution is steered based on the dual price aggregator as defined in mathematical formation above, drawing on the prices $pftLandCat$ for the different land categories $landCat$, the transformation elasticity $omegaAezTop$ and the share parameters $gTop$:

The distribution of the total land $x_{ftTop}$ to the two categories $landCat1$ uses the equation for above $X_i$, drawing on the dual price aggregator $pftTopD$ as defined above:

Note that the formulation above might either define the land in a specific category directly or an intermediate variable in case; the latter in the case where top-level economic land use categories are not allowed to shrink.

**Middle tier: agricultural land use distribution to grazings and crops**

A similar set of equations is present for the middle tier, i.e. the average price of an aggregate of alnd used in animals or crops is defined from revenue exhaustion:

The dual of the land balance is named $pftGrazAgr$ and is based on dual CET price aggregator
Where \( \text{landCat2} \) (set \( \text{landCat} \) (landCat) "Land categories" / Grazing, Agriculture /;) captures the two components. It is used in the distribution of the agricultural total:

\[
\begin{align*}
\text{xtftLandCat2Eq} & (rs(r), aes, \text{landCat2}, ts(t)) \ \text{if} \ (\text{aesFlag}(r, aes) \ \text{and} \ \text{gfTop}(r, aes, \text{landCat2}, t)) \ \text{..}
\text{xtftLandCat}[r, aes, \text{landCat2}, ts(t)]/\text{xtftLandCatScale}(r, aes, \text{landCat2}, t) = E=
\text{gfTop}(r, aes, \text{landCat2}, t)
\text{xtftLandCat}(r, aes, \text{landCat2}, t)/\text{xtftLandCatScale}(r, aes, \text{landCat2}, t)
* \{\text{pftLandCat}(r, aes, \text{landCat2}, t)/\text{pftGrAgr}(r, aes, t)\}^\omega \text{AezTop2}(aes);
\end{align*}
\]

**Lower tier: distribution of individual land using production activities**

The lower tier uses standard CET aggregators which are not volume preservering. That implies that e.g. multiple harvests or idling land in managed land used for a type of animal or crop can lead to a difference between physical land stock defined above and the sum of the land used in the different activities.

The average land price for each land category \( \text{pftLandCat} \) is defined in the equation \( \text{pftLandCatEq} \) using the usual CET dual price aggregator and the transformation elasticity \( \omega \text{Aez} \):

\[
\begin{align*}
\text{pftLandCatEq}(rs(r), aes, \text{landCat}, t(t)) \ \text{if} \ (\text{aesFlag}(r, aes) \ \text{and} \ \text{gfTop}(r, aes, \text{landCat}, t) \ \text{and} \ (\text{not sameas}(\text{landCat}, \text{Grazing agriculture}))) \ \text{..}
\text{pftLandCat[}(r, aes, \text{landCat}, t)/\text{pftLandCatScale}(r, aes, \text{landCat}, t)
= E=
\text{sum(landCat a, landCat.a) \ \text{if} \ \text{gfAez}(r, aes, t),
\text{gfAez}(r, aes, t) \ \text{if} \ \text{gfAez}(r, aes, t) \ \text{if} \ (1-\omega \text{Aez}(aes, \text{landCat}))/(1/(1-\omega \text{Aez}(aes, \text{landCat})))
)/\text{pftLandCatScale}(r, aes, \text{landCat}, t);
\end{align*}
\]

Accordingly, the distribution of the land in each land category to the different activities in the equation \( \text{xtftAezEq} \) is based on the share parameter \( \text{gfAez} \), the given total \( \text{xtftLandCat} \), the price relation and the transformation elasticity:

\[
\begin{align*}
\text{xtftAezEq}(rs(r), aes, a, t(t)) \ \text{if} \ (\text{aesFlag}(r, aes) \ \text{and} \ \text{gfAez}(r, aes, a, t) \ \text{..}
\text{xtftAez}(r, aes, a, t)/\text{xtftAezScale}(r, aes, a, t) = E=
\text{sum(landCat a (landCat.a),
\text{gfAez}(r, aes, a, t) \ \text{if} \ \text{xtftLandCat}(r, aes, landCat, t)/\text{xtftAezScale}(r, aes, a, t)
* \{\text{pftAez}(r, aes, a, t)/\text{pftLandCat}(r, aes, landCat, t)\}^\omega \text{AezAez}(aes, landCat));
\end{align*}
\]

**Link into global model**

As land is not mobile across the AEZ, total factor use of land \( \text{xtf} \) and the related price \( \text{pft} \) are defined by the following tree equations. The first equation \( \text{xtfLandEq} \) sums the total endogenous land uses in each \( \text{aez} \) \( \text{xtfTop} \) to the national or sub-national total \( \text{xf} \). The second equation \( \text{yftLandEq} \) sums up total factor remuneration and the third one \( \text{pftLandEq} \) defines the average factor price for land, \( \text{pft} \):

\[
\begin{align*}
\text{xtfLandEq}(rs(r), "\text{land},t(t)) \ \text{if} \ \{\text{xtf.ranges}(\text{"\text{land}"},t \ ne 0) \ \text{of} \ \text{sum(\text{aezFlag}(r, \text{aez1}), 1) \ \text{if} \ \text{xtfFlag}(r, \text{"\text{land}"})\} \ \text{..}
\text{xtf(r,\"\text{land},t)/\text{xtfScale}(r,\"\text{land}),t = E=\text{sum(\text{aezFlag}(r, \text{aez1}), \text{xtfTop(r, \text{aez1}, t)/\text{xtfScale}(r,\"\text{land},t),t)}
\text{vftLandEq}(rs(r), \text{t(t)} \ \text{if} \ \{\text{vftFlag}(r, \text{\"\text{land}") \ \text{if} \ \text{sum(\text{aezFlag}(r, \text{aez1}), 1) \ \text{..}
\text{vftLand(r,\"\text{land},t)/\text{vftScale}(r,\"\text{land}),t = E=\text{sum(\text{aezFlag}(r, \text{aez1}), \text{vftTop(r, \text{aez1}, t)/\text{vftScale}(r,\"\text{land},t),t)}
\text{pftLandEq}(rs(r), \text{\"\text{land},t) \ \text{if} \ \{\text{pft.range}(r, \text{\"\text{land}") \ \text{if} \ \text{sum(\text{aezFlag}(r, \text{aez1}), 1) \ \text{if} \ \text{vftFlag}(r, \text{\"\text{land}"}) \ \text{..}
\text{pft(r,\"\text{land},t) = E=\text{vftLand(r,\"\text{land},t)/\text{xtf(r,\"\text{land},t)},t));
\end{align*}
\]

**Lower bounds on land categories**

If each top-level land use category \( \text{landCat1} \) (forestry, Grazing_Agriculture) is only allowed to expand, but not too shrink, the formulation differ depending whether the model is solved as a CNS or MCP. In the MCP case, it is sufficient to introduce a lower bound. The CNS version would become
infeasible if that lower bound would become active, we hence need an additional variable which is called \( x_{ftLandCatS} \). In that case, the \( x_{ftLandCatEq} \) define \( x_{ftLandCatS} \) which might hence be smaller that the benchmark area \( x_{ftLandCatBase} \). In order to make to sure that actual land use \( x_{ftLandCat} \) does not undercut the base, a new equation \( x_{ftLandCatSEq} \) uses a Huber-Max formulation:

\[
\begin{align*}
\text{model GTAP AEZ} & \quad / \\
\text{pfTopEq.pftTop} & \quad \text{pfTopEpEq.pftTopD} \\
\text{pfTop2Eq.pftLandCat} & \quad \text{pfGrazAgrEq.pftGrazAgr} \\
\text{xftTopEq.xftTop} & \quad \text{xftLandCatEq.xftLandCat} \\
\text{xftLandCatEq.xftLandCatBase} & \quad \text{xftLandCatEq.xftLandCat} \\
\text{\$if then.kKeepLand} & \quad \text{"KeeplEconLand"="on"} \\
\text{xftLandCatEq.xftLandCat} & \quad \text{\$endif.kKeepLand} \\
\text{pfLandCatEq.pftLandCat} & \quad \text{xftAezEq.xftAez} \\
\text{xftLandEq.xft} & \quad \text{vftLandEq.vftLand} \\
\text{pfLandEq.pft} & \quad \text{pfAezEq.pftAez} \\
\text{pfAezEq.pftAez} & \quad \text{pf}\end{align*}
\]

3.12.3 Parameterization

The necessary data for the AEZ module must be loaded during the data preparation step. The aezFlags are set depending on finding any land use activities in the aez data base:

\[
\text{aezFlag[rNat,aez]} \quad \text{\{$sum(a, landUse(rNat,aez,a,"vfm")) = Yes;$\}}
\]

The land use by activity is initialized reflecting the global scaling factor as long as it is above a minimum threshold:

\[
\begin{align*}
\text{\%ftAez.l(r,aez,a,t0) \quad} & \quad \text{aezFlag[r,aez] = landUse(r,aez,a,"vfm") * gblScale; } \\
\text{ftAez.l(r,aez,a,t0) \quad} & \quad \text{\{ftAez.l(r,aez,a,t0) le threshold\} = 0;}
\end{align*}
\]

If a land use activity is zero in all aezs with data for a region, total land use share are used:

\[
\begin{align*}
\text{\%ftAez.l(r,aez,a,t0) \quad} & \quad \text{\{zf.l(r,"land",a,t0) and aezFlag[r,aez]\} and (not sum(aezFlag[r,aez],\%ftAez.l(r,aez,a,t0))}} \\
\text{\%ftAez.l(r,aez,a,t0) \quad} & \quad \text{\{zf.l(r,"land",a,t0) * landUse(r,aez,"land","nom")/sum(aezFlag[r,aez],landUse(r,aez,"land","nom"));}
\end{align*}
\]

Afterwards, scaling ensures that adding up over the aez recovers the given total:
The prices are initialized to zero, and the aggregates defined from summing up, i.e.:

\[
\text{xfscale}(r, \text{"land"}, a, t0) = \sum(\text{aezFlag}(r, aez), \text{xfthez}1(r, aez, a, t0));
\]

\[
\text{xfthez}1(r, aez, a, t0) \times \text{xfthez}1(r, aez, a, t0) \times \text{xfz}((r, \text{"land"}, a, t0)/\text{xfscale}(r, \text{"land"}, a, t0));
\]

3.12.4 Visualization of GTAP-AEZ results

The views relating to results of GTAP-AEZ can be found under

The first view provides a tabular overview at global level, i.e. results are aggregated over regions to the global 18 AEZs:

The second view over global maps on and the land categories
4. Data base generation

During the data base generation, the user decides:

- which regional and sector resolution to use;
- if the tiny costs shares are to be removed (recommended);
- which additional data to introduce (land use, CO2 and non-CO2 emissions, sub-regional data for non-EU countries, MRIO split factors);
- if GTAP sectors are subject to a further split, the data and definitions must be supplied by the user.

The GTAPAgg utility, which you should have received together with your GTAP data base, allows you to build a GTAP data base with a sector and regional aggregation chosen by you (see e.g. https://www.gtap.agecon.purdue.edu/products/packages.asp, a training video on youtube https://www.youtube.com/watch?v=QDBR0KqNuzE&feature=youtu.be or the first pages of http://economia.unipv.it/pagp/page_personali/msassi/QPA/materialQPA/Introduction%20to%20GTAP.pdf). That data base comprises different data sets stored in HAR (header array) files, a proprietary data format for GEMPACK. Mark Horridge has developed a program called HAR2GDX which converts a HAR file into the proprietary data format GDX used by GAMS. HAR2GDX is part of a GAMS installation and used by us to load output from GTAPAgg.

If you generated a data base with GTAPAgg intended for use with CGEBox, please copy the zip file generated by GTAPAgg to the “data” directory (or store the file directly there from GTAPAgg). In order to make the data available to the model, choose the workstep “Prepare data” and the task “Import from GTAPAGG”. The file you copied in the data directory should be available in the dropbox under “Input file from GTAPAGG (*.zip)” and selected by you.

Important:

1. **Do not rename a zip file** generated by GTAPAGG as the program will not find the correct agg file in that case and data base generation for CGEBOX will fail.
2. For the same reason, do not use the “default.agg” from GTAPGG. If you want to use these aggregation definitions, store them first under a different name before you generate the aggregated data set.

If you want to use the GTAP-AEZ extensions, copy the “2007Luv81.tzip” in the data directory and check “Load land use data”. In order to work with the GTAP9 version, download the 2011 data set “LAND_USE_140_REG.ZIP from https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=4844” and copy it to the data directory under the name “2011Luv9.zip”. Note that a license for GTAP9 is required. The data set can be combined with GTAP-Water data. In order to benefit from introducing water and a distinction between irrigated and non-irrigated crops in the model, please use the diagonal version of the data base “GTAP-Water-V9-A.0.zip”.

---

19 The authors would like to thank Farzad Taheripour for releasing an additional data set with Value Added at AEZ level for 2011.

20 The author would like to thank Iman Haqiqi for useful feedback on the content of the data base and releasing a new version which fixed issues preventing to use the data base with CGEBox.
copied into a (separate) GTAPAGG installation. The data might then be aggregated to the non-diagonal make matrix, see below.

The intermediate GDX and HAR files can be deleted. Keeping them eases debugging in case something went wrong during data processing.

The intermediate GDX and HAR files can be deleted. Keeping them eases debugging in case something went wrong during data processing.

During data base loading, you can use a facility to additionally filter out small values, three options are available:

Choosing the option “None” will simply load the data base as it is, i.e., without filtering, which is the way the GEMPACK version operates. The following short section discusses the two other options.

4.1 Simple deletion

With simple deletion, transactions loaded from the HAR file are removed from the data base if they are in absolute terms below the threshold entered on the interface under “Absolute tolerance”. With a value of 1.E-10, that deletion step is skipped. Afterwards, the transactions are formatted into a SAM structure. The resulting SAM is then cleansed with the chosen absolute tolerance. No attempt is made with “simple deletion” to maintain the resulting SAM balanced. That option is mostly maintained as a fall back, in case the more refined rebalancing step normally recommended and discussed next should not work. Please note that there is no guarantee that a global SAM “cleansed” by simple delete will work with the model as such cleansing can lead not only to numerically, but also logically inconsistent data. Imagine the case where a subsidy rate is above 100%; cleansing might delete the tax base such as primary factor use in a sector, but keep the tax flow.

4.2 Rebalancing

The “Rebalancing” option uses more advances tactics to select transactions to delete, and perhaps more importantly, rebalances the resulting SAMs. As with simple deletion, first transactions loaded from the HAR file which in absolute term are below the chosen absolute threshold are removed from the data base. With a value of 1.E-10, that preliminary deletion step is skipped. It is generally not recommended to use absolute deletion thresholds above 1.E-6 in combination with rebalancing as the subsequent relative thresholds will anyhow apply more refined rules. Please note that rebalancing was only tested with CONOPT and that alternative NLP solver such as PATHNLP might not work satisfactory.

The consecutively applied filtering and rebalancing approach is an extension of the method and code developed by Tom Rutherford for “GTAPinGAMS” (see e.g. http://www.mpsge.org/gtap6/). It deletes component of the SAM depending on their shares on specific totals, according to the “Relative tolerance” entered on the interface:

- Domestic and imported intermediate demand of a commodity are dropped relative to its total output
Private / government / investment domestic respectively import demand of a commodity are dropped relative to total private / government / investment domestic respectively import demand.

Trade flows of a product are dropped if both shares on total exports of that product and its exporter and on imports of that product and its importer are below the relative threshold.

Production is dropped if net production of a commodity, i.e., after intermediate use of that commodity in its own production is deducted, is below the relative threshold with regard to total net production.

The filtering process imposes restrictions which should maintain the regional SAMs balanced. Additional constraints ensure that production activities require added value and intermediate inputs, if not already otherwise found in the database.

As filtering systematically removes elements from the SAM and the trade matrices, the process implies without further corrections shrinking the economies. During rebalancing, the algorithm can therefore add penalties for deviations from the following aggregate transactions:

- By adding these penalties terms, the non-deleted entries (and thus most important transactions) tend to be scaled upwards. It is generally recommended to use these penalties terms. The code will also scale all non-deleted trade flows to approximately maintain the total volume of international trade and related international transport margins.

The absolute and relative thresholds are stepwise enforced. For the first few steps, exponential increases are used, starting with minus half the number of steps. For six steps, to give an example, the first thresholds applied will be 1.E-3 of the final one, next 1.E-2 and finally 10%. The remaining steps will use equal linear increases between 10% and the desired final ones. Once the final thresholds are active, filtering is still applied several times until no small values are found any longer. The code should ensure that the resulting transactions are still fully consistent with each other, i.e., both the resulting trade matrices and the SAMs are balanced. The changes imposed by filtering and subsequent balancing are stored on the “itrlog” symbol in the GDX container with the final results. Inspecting how the stepwise enforcement of the thresholds impacts on the number of non-zero items can inform on an appropriate level for tolerances to be used.

The SAMs used during filtering are – as in GTAPAGG – defined in Million constant dollars. An absolute threshold of 1.E-6 will hence delete any economic transactions worth a single dollar or less. In SAMs with high regional and sectoral detail, even such tiny transactions might make up to 10% of the non-zero entries. Increasing the threshold for 1000 $ might remove ¼ or more of all non-empty transactions. Similar results are found from using relative tolerances of 0.001%.

Thanks to balancing, also rather dis-aggregated versions of the model with large number of sectors and regions can be used. The biggest impact of the filtering is typically on transactions related to bi-lateral trade flows. Here, often 50% or more of the flows account for only 1% of the total value of these transactions. Thus, tiny changes in the relative tolerance can have a considerable impact on the number of deleted transaction, and one might need to experiment with settings in the range around 1.E-1 to 1.E-4 to find a compromise between sparsity and the implied changes on structure of the economy. For very large data sets (e.g. a 1:1 version) filtering thresholds above 1% might be needed to yield...
reasonable model sizes. The user can additionally define a minimum number of transactions to be kept, which reduces the need to experiment with different thresholds as the filtering process will stop once less than the desired number of transactions is reached. Tests with the model have shown that the model in full resolution of the GTAP 8.1 data base without filtering, i.e. 57 sectors and 134 regions, can be solved in partial trade liberalization scenarios, solution has failed with other shocks on models with more than 400,000 transactions, especially if the global bank mechanism active. A close look at the filtering statistics is recommended, to avoid sharp impacts on the structure of the economy. A more detailed discussion on the relation between model dis-aggregation, filtering, solution behavior and simulated welfare impacts provide Britz et al. 2015.

### 4.2.1 Equations in the re-balancing program

The balancing program is found in “buildfilter.gms” draws heavenly on the code of Tom Rutherford. For each sector, it guarantees revenue exhaustion for the region currently subject to filtering. The RHS shows the revenues corrected for the output tax rate rto, where vdm_ are domestic sales which can adjust during balancing and vxm are fixed export revenues. The RHS shows the firms demand for imported and domestic intermediates vifm_ and vdfm_ as adjusting variables with related given tax rates rtfi and rtfd and factor use vfm_ with related taxes rtf. The sets are td for traded products (aliased with td1) and fe for factors:

\[
\text{profit}(td,\text{rNat}) = r(b(r\text{Nat}) \text{ and (vom}(td,\text{rNat}) = 0))
\]

\[
\begin{align*}
\text{vdm}(td,\text{rNat}) + \text{vxm}(td,\text{rNat}) & \times (1 - \text{rto}(td,\text{rNat})) \\
= & \sum_{td1} \text{vifm}(td1,td,\text{rNat}) \times (1 + \text{rtfi}(td1,td,\text{rNat})) \times \text{vifm}(td1,td,\text{rNat}) \times \text{vdfm}(td1,td,\text{rNat}) \\
+ & \sum_{fe} \text{vfm}(fe,td,\text{rNat}) \times (1 + \text{rtf}(fe,td,\text{rNat})) \times \text{vfm}(fe,td,\text{rNat})
\end{align*}
\]

The following three equation ensure that factor use and intermediate input use cannot drop to zero as long as there is production, using the “BigM” approach found in integer programming. And additional equation ensures a minimal cost shares for value added, the threshold can be set by the user on the interface:

\[
\text{feq}(td,fe,\text{rNat}) \times \text{r}(fe,\text{rNat}) \text{ and (vfm}(fe,td,\text{rNat})\text{*bigM*100>vom}(td,\text{rNat}) \text{ and (vom}(td,\text{rNat}) = 0) \text{ and bigM})
\]

\[
\text{va}(td,\text{rNat}) \times \text{r}(\text{fe,\text{rNat})} \times \text{sum}(fe,\text{vfm}(fe,td,\text{rNat})\text{*bigM*100>vom}(td,\text{rNat}) \text{ and (vom}(td,\text{rNat}) = 0) \text{ and bigM})
\]

\[
\text{nd}(td,\text{rNat}) \times \text{r}(\text{fe,\text{rNat})} \times \text{sum}(td1, \text{vifm}(td1,td,\text{rNat}) \text{ + vdfm}(td1,td,\text{rNat}) \text{ + bigM*100>vom}(td,\text{rNat}) \text{ and (vom}(td,\text{rNat}) = 0) \text{ and bigM})
\]

The domestic market balance ensures that domestic sales vdm_ are exhausted by government demand vdgm_, private demand vdpm_, investment demand vdim_ and the intermediate demand of the sectors vdfm_.
A similar equation ensures that the given total imports are exhausted:

\[
\text{impmkt}(td, rNat) \cdot (rb(rNat) \text{ and } \text{vim}(td, rNat) \text{ ne 0}) ..
\]

\[
vim(td, rNat) = \text{vim}(td, rNat) \cdot \text{vim0}(td, rNat) \\
+ \text{vim}(td, rNat) \cdot \text{vim0}(td, rNat), \text{vimf}_m(td, rNat) ;
\]

Thinning out the SAM would imply the overall size of the regional economy shrinks. In order to avoid that, the program defines scaling factor “keepCor” for total intermediate consumption:

\[
\text{intKeep}(rNat) \cdot rb(rNat) ..
\]

\[
\text{sum}(td, td) \cdot vcm(td, rNat), \text{vim}_m(td, td, rNat) \cdot \text{vim0}(td, td, rNat) \\
+ \text{vim}(td, rNat) \cdot \text{vim0}(td, rNat) ;
\]

\[
= \text{E= sum}(td, td, td) \cdot vcm(td, rNat), \text{vim}_m(td, td, rNat) \cdot \text{vim0}(td, td, rNat) \\
+ \text{vim}(td, rNat) \cdot \text{vim0}(td, rNat) ;
\]

For GDP:

\[
gdpKeep(rNat) \cdot rb(rNat) ..
\]

\[
gdp(rNat) \cdot (1 + \text{keepCor}("gdp", rNat)/100)
\]

And for factor income:

\[
\text{factInc}(rNat) \cdot rb(rNat) ..
\]

\[
(\text{factInc}(rNat) + \text{bog}(rNat) - \text{sum}(td, \text{vet}(td, rNat))) \cdot (1 + \text{keepCor}("factInc", rNat)/100)
\]

\[
= \text{E= sum}(fe, td) \cdot \text{vfm}(fe, td, rNat) \\
+ \text{sum}(td, td) \cdot \text{vcm}(fe, td, rNat) \\
- \text{sum}(td, rNat) \cdot \text{vex}(td, rNat, rNat) \cdot \text{vex}(td, rNat, rNat) \cdot (1 - \text{cex}(td, rNat, rNat)) \\
+ \text{sum}(td, rNat) \cdot \text{vex}(td, rNat, rNat) \cdot \text{vex}(td, rNat, rNat) \\
- \text{sum}(td, \text{vet}(td, rNat));
\]

Similar statements define correction factors for government demand, investments, private consumption. These elements can be switched on the interface.

4.2.2 Overall solution logic

The program stepwise increases the threshold applied,
Rebalancing

At the beginning of each iterations, it re-define the aggregate values of imports, transport demand, exports, domestic sales and aggregate production, e.g.

Aggregate value of imports:

\[ \text{vim}(t, rNat) = \text{sum}(rNat, [\text{vxxmd}(t, rNat, rNat) \times (1 - \text{rtxs}(t, rNat, rNat)) \times \text{curRelTol}(t, rNat)]) \]

Next, it deletes positions which are below the thresholds, for instance:

--- delete import and domestic gov demand for products if below tolerance times total gov demand

\[
\text{vigm}(t, rNat) \begin{cases} 
\text{vigm}(t, rNat) \times \text{curRelTol}(t, rNat) / 100 + \text{vtrw}(t, tdi, tdi, rNat) & \text{if vigm}(t, rNat) > 0; \\
\text{vigm}(t, rNat) \times \text{curRelTol}(t, rNat) / 100 + \text{vtrw}(t, tdi, tdi, rNat) & \text{if vdm}(t, rNat) > 0.
\end{cases}
\]

After dropping these items, total import and domestic demand are re-aggregated:

--- aggregate total import and domestic demand per product

\[
\text{vim}(t, rNat) = \sum(tdi, \text{vxxmd}(tdi, tdi, tdi, rNat)) + \text{vim}(t, rNat) + \text{vigm}(t, rNat) + \text{vdm}(t, rNat);
\]

Exports of a product by a region are dropped if (1) the product’s exports fall below the threshold of the exporters’ total exports, and (2) its import value fall below the threshold of the total import of the importer of that product:

\[
\text{if } \text{vigm}(t, rNat) \times \text{curRelTol}(t, rNat) / 100 + \sum(tdi, \text{vxxmd}(tdi, rNat)) > 0; \text{dropexports}(t, rNat) = 0;
\]

Related bi-lateral entries are removed:

--- delete bilateral entries if exports are dropped

\[
\text{vxxmd}(t, rNat, rNat1) \begin{cases} 
\text{dropexports}(t, rNat) = 0; \\
\text{vtrw}(t, tdi, tdi, rNat1) \times \text{rtxs}(t, rNat, rNat1) \times \text{dropexports}(t, rNat) = 0; \\
\end{cases}
\]

Imports are dropped if there is no import demand left:

--- drop imports if no import demand

\[
\text{dropimports}(t, rNat) \begin{cases} 
\text{eq} \{ \text{vigm}(t, rNat) \times \text{curRelTol}(t, rNat) / 100 + \sum(tdi, \text{vxxmd}(tdi, tdi, tdi, rNat)) = 0 \} = \text{yes}; \\
\text{dropimports}(t, rNat) \begin{cases} 
\text{if} \text{vdm}(t, rNat) = 0; \\
\text{vdm}(t, rNat) \begin{cases} 
\text{dropimports}(t, rNat) = 0.; \\
\end{cases}
\end{cases}
\end{cases}
\]

Equally, production is dropped if its share – corrected for own intermediate consumption such as seed use – is below the share on total production value:

\[
\text{if} \text{vdm}(t, rNat) \times \text{curRelTol}(t, rNat) / 100 + \sum(tdi, \text{vxxmd}(tdi, tdi, rNat)) = 0; \text{dropprod}(t, rNat) = \text{yes}.
\]
Equally, production is dropped if no domestic and export demand is left:

```plaintext
--- drop production if no domestic and export demand

dropprod(td,rNat) $ \{ (vxn(td,rNat)+vdxm(td,rNat)+vdim(td,rNat)+vdpm(td,rNat)
+sum(tdi=$(not sameas td,td1),vdfm(td,td1,rNat))) eq 0 \} = yes;
```

Some of these statements are repeated in a loop to ensure that all removals are consistent, not shown here.

Afterwards, bi-lateral flows are subject to a drop if there value on total imports is below the threshold:

```plaintext
--- rescale vxml to match approx. old exports of exporter and imports of importer

bilateralTradeScale(rNat,rNat1) = ([sum(tdi,vxml(tdi,rNat1))/sum(tdi,vxm(tdi,rNat))]/[sum(tdi,vxm(tdi,rNat))/sum(tdi,vxml(tdi,rNat1))]) x [sum(tdi,vxm(tdi,rNat))/sum(tdi,vxml(tdi,rNat1))];
```

In order to make sure that the bi-lateral trade balances are approximately maintained, the remaining trade flows are scaled:

```plaintext
--- rescale vxml and vtwr to match approx. old exports of exporter and imports of importer

vxml(td,rNat,rNat1) $ vxml(td,rNat1) = vxml(td,rNat1) * bilateralTradeScale(rNat,rNat1);
vtwr(td,td1,rNat,rNat1) $ vtwr(td,td1,rNat1) = vtwr(td,td1,rNat1) * bilateralTradeScale(rNat,rNat1);
```

After these corrections, a global scaler is applied to ensure that global trade in a product does not change too much:

```plaintext
--- rescale global trade (up to 20%)

vxt(td) = sum((rNat,rNat1), vxml(td,rNat,rNat1));
vxt(td) $ vxt(td) = min(1.2,vx0(td)/vxt(td));
vxml(td,rNat,rNat1) $ vxml(td,rNat1) = vxml(td,rNat1) * vxt(td);
```

Similarly, not shown here, also import and export tax rates are scaled to maintain total tariff income and export revenues for each country, not shown here. The resulting entries are used as starting points for the next iteration:

```plaintext
vdm_.l(td,rNat) = vdm(td,rNat);
vfm_.l(fe,td,rNat) = vfm(fe,td,rNat);
vifm_.l(td,td1,rNat) = vifm(td,td1,rNat);
vdfm_.l(td,td1,rNat) = vdfm(td,td1,rNat);
vdm_.l(td,rNat) = vdm(td,rNat);
vdm_.l(td,rNat) = vdm(td,rNat);
vig_.l(td,rNat) = vigm(td,rNat);
vipm_.l(td,rNat) = vipm(td,rNat);
vdim_.l(td,rNat) = vdim(td,rNat);
viiim_.l(td,rNat) = viim(td,rNat);
```

Afterwards, each country is solved individually to rebalance the SAM. That is possible as bilateral transactions are fixed in the equation system. The solution process consists of two steps: first a linear approximation is used to provide a good start point, before a Highest Posterior Denstity estimator minimizes relative squared differences.
Rebalancing

The linear estimator pulls tiny entries to zero, i.e. such entries where the a-priori values is zero. Take the following entry as an example which relates to domestic private consumption:

\[ v_{dpm}(td, rNat) \times (v_{dpm}(td, rNat) = 0) \times v_{dpm0}(td, rNat) \]

It entered the penalty to minimize if (1) it desired level is zero – first term, and (2) there was an entry in the database from GTAPAgg – second term.

\[ v_{zdef} = \sum ((v_{Nat}, td) \times (v_{Nat}, trNat)) \times (v_{dpm}(td, rNat)) \times (v_{dpm}(td, rNat) \times v_{dpm0}(td, rNat)) \]

That linear sparsity measure is added to the relative deviations, e.g.:

\[ \frac{(sqr(v_{dpm}(td, rNat) - v_{dpm0}(td, rNat)) + 1.0e-8)}{v_{dpm0}(td, rNat) \times v_{dpm}(td, rNat) \neq 0} \]

In order to speed up processing, the non-linear problem can be solved on a grid. There are more technical details not discussed in here. The rebalancing step produces output on screen which might be interesting to check. The following screen shots show results from filtering out from a 57x20 data base with a maximal threshold of 0.001%:

The first block reports the global totals, these deviations should be small, in here, the sum, maximal around 974 out of 35035323 are lost:

<table>
<thead>
<tr>
<th></th>
<th>start</th>
<th>end</th>
<th>abs</th>
<th>diff</th>
<th>rel diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GDP</strong></td>
<td>60168524</td>
<td>60168548</td>
<td>24</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>vom</strong></td>
<td>141872873</td>
<td>141872304</td>
<td>569</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>vxmd</strong></td>
<td>19129902</td>
<td>19129902</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>vtwr</strong></td>
<td>776031</td>
<td>776031</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>vifm</strong></td>
<td>13747932</td>
<td>13747675</td>
<td>257</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>vdfm</strong></td>
<td>60683471</td>
<td>60683471</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>vijm</strong></td>
<td>4313228</td>
<td>4313725</td>
<td>497</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td><strong>vdpm</strong></td>
<td>35035323</td>
<td>35034349</td>
<td>974</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>vimp</strong></td>
<td>222442</td>
<td>222426</td>
<td>16</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td><strong>vdgm</strong></td>
<td>12306107</td>
<td>12306312</td>
<td>205</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td><strong>viim</strong></td>
<td>2349721</td>
<td>2349497</td>
<td>224</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td><strong>vdim</strong></td>
<td>13941703</td>
<td>13942239</td>
<td>536</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
The second block shows the reduction in the non-zero SAM entries. For the given example, despite the rather small threshold, the non-zero SAM entries as defined in the program could be reduced by almost a quarter (-23.27% in total), clearly with some differences across countries:

<table>
<thead>
<tr>
<th>item</th>
<th>start</th>
<th>end</th>
<th>abs diff</th>
<th>rel diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>216819</td>
<td>166359</td>
<td>-50460</td>
<td>-23.27%</td>
</tr>
<tr>
<td>Oceania</td>
<td>11915</td>
<td>9940</td>
<td>-1975</td>
<td>-16.58%</td>
</tr>
<tr>
<td>Jpn</td>
<td>11528</td>
<td>8172</td>
<td>-3356</td>
<td>-29.11%</td>
</tr>
<tr>
<td>Kor</td>
<td>11429</td>
<td>7859</td>
<td>-3570</td>
<td>-31.24%</td>
</tr>
<tr>
<td>Twn</td>
<td>11438</td>
<td>6877</td>
<td>-4561</td>
<td>-39.88%</td>
</tr>
<tr>
<td>HKG</td>
<td>11453</td>
<td>7363</td>
<td>-4090</td>
<td>-35.71%</td>
</tr>
<tr>
<td>EastAsia</td>
<td>11120</td>
<td>8754</td>
<td>-2366</td>
<td>-21.28%</td>
</tr>
<tr>
<td>SEAsia</td>
<td>11954</td>
<td>9936</td>
<td>-2018</td>
<td>-16.88%</td>
</tr>
<tr>
<td>SouthAsia</td>
<td>11600</td>
<td>9349</td>
<td>-2251</td>
<td>-19.41%</td>
</tr>
<tr>
<td>Usa</td>
<td>11612</td>
<td>8732</td>
<td>-2880</td>
<td>-24.80%</td>
</tr>
<tr>
<td>Can</td>
<td>11528</td>
<td>9682</td>
<td>-1846</td>
<td>-16.01%</td>
</tr>
<tr>
<td>Mexx</td>
<td>11345</td>
<td>8034</td>
<td>-2511</td>
<td>-22.13%</td>
</tr>
<tr>
<td>Arg</td>
<td>11171</td>
<td>7241</td>
<td>-3930</td>
<td>-35.18%</td>
</tr>
<tr>
<td>Bra</td>
<td>11312</td>
<td>8417</td>
<td>-2895</td>
<td>-25.59%</td>
</tr>
<tr>
<td>LatinAmer</td>
<td>11729</td>
<td>10638</td>
<td>-1091</td>
<td>-9.30%</td>
</tr>
<tr>
<td>Deu</td>
<td>11513</td>
<td>9044</td>
<td>-2469</td>
<td>-21.45%</td>
</tr>
<tr>
<td>EU_28</td>
<td>11786</td>
<td>10482</td>
<td>-1304</td>
<td>-11.06%</td>
</tr>
<tr>
<td>MENA</td>
<td>11951</td>
<td>10839</td>
<td>-1112</td>
<td>-9.30%</td>
</tr>
<tr>
<td>Ken</td>
<td>10958</td>
<td>7389</td>
<td>-3569</td>
<td>-32.57%</td>
</tr>
<tr>
<td>SSA</td>
<td>12002</td>
<td>10598</td>
<td>-1404</td>
<td>-11.70%</td>
</tr>
<tr>
<td>RestofWorld</td>
<td>11849</td>
<td>10876</td>
<td>-973</td>
<td>-8.21%</td>
</tr>
</tbody>
</table>

A second list reports the changes for each product:

<table>
<thead>
<tr>
<th>prod</th>
<th>start</th>
<th>end</th>
<th>abs diff</th>
<th>rel diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdr</td>
<td>3735</td>
<td>1855</td>
<td>-1880</td>
<td>-50.33%</td>
</tr>
<tr>
<td>wht</td>
<td>3816</td>
<td>2227</td>
<td>-1589</td>
<td>-41.64%</td>
</tr>
<tr>
<td>gro</td>
<td>4011</td>
<td>2722</td>
<td>-1289</td>
<td>-32.14%</td>
</tr>
<tr>
<td>v_f</td>
<td>4260</td>
<td>3208</td>
<td>-1052</td>
<td>-24.69%</td>
</tr>
<tr>
<td>osd</td>
<td>4134</td>
<td>2626</td>
<td>-1508</td>
<td>-36.48%</td>
</tr>
<tr>
<td>c_b</td>
<td>3168</td>
<td>1074</td>
<td>-2094</td>
<td>-66.10%</td>
</tr>
<tr>
<td>pfB</td>
<td>3921</td>
<td>2026</td>
<td>-1895</td>
<td>-48.33%</td>
</tr>
<tr>
<td>ocr</td>
<td>4311</td>
<td>3366</td>
<td>-945</td>
<td>-21.92%</td>
</tr>
<tr>
<td>ctl</td>
<td>3897</td>
<td>2476</td>
<td>-1421</td>
<td>-36.46%</td>
</tr>
<tr>
<td>oap</td>
<td>4236</td>
<td>3109</td>
<td>-1127</td>
<td>-26.61%</td>
</tr>
<tr>
<td>rmk</td>
<td>3087</td>
<td>1430</td>
<td>-1657</td>
<td>-53.68%</td>
</tr>
</tbody>
</table>

(…) and a last one for the different items, see below. Interestingly, perhaps different from expected, bi-lateral trade entries vtwr are hardly thinned out, only about 1.6% of the entries are removed. That reflects the rather conservative way how the threshold is applied for trade flows as discussed above.
Overall, the balancing has proven as quite useful when solving models with both high regional and sector detail.

### 4.2.3 Special treatment for specific regions and sectors

When building a data base for a project, it might be desirable to apply less aggressive filtering thresholds for specific regions and/or sectors in the focus of the application. The algorithm therefore allows defining lists of regions/sectors with accompanying specific thresholds. The codes for regions/sectors need to be inputted in the two text fields. “Reduced thresholds only in combination” will apply the different threshold only to the intersection of the inputted regions and sectors, otherwise, all regions and sectors inputted will be receive different thresholds. Take an example where you enter for regions “xoc” and for sectors “pd”. If “Reduced thresholds only in combination” is NOT switched on, all transactions of the region “xoc” and all transactions for the sector “pd” will be treated differently. If the “Reduced thresholds only in combination” is active, only the transaction relating both to “pd” and the region “xoc” are exemptions.

However, filtering for the remaining sectors/regions has still an impact on these exemptions. For example, if production of a sector in a region is dropped, the related export flows need to be dropped as well, affecting potentially transactions in regions and sectors where tighter thresholds are used. Tests have however indicated that very few transactions are lost in regions/sectors where stringent thresholds are applied as long as the overall filtering thresholds are not too aggressive.

### 4.2.1 Technical aspects

The global GTAP SAM is clearly not well scaled from a data balancing problem as very small and very large transaction must be hosted in the same matrix. That poses a problem for the solvers. The code uses a number of tactics to respond to that challenge. CPLEX as a specialized LP/QCP solver is extremely fast with solving large scale balancing problems with linear constraints. It is therefore the preferred choice to solve balancing problems. The quality of the QCP solution with regard to feasibility accuracy is however lower compared to a LP solution and generally also lower compared to
CONOPT4. Therefore, both for the filter and the split utility, after a solution to the balancing using squared relative differences is found, a LP is solved. Its objective function minimizes the difference between last solution and a solution fitting more accurate in the constraints. That will systematically driver the estimates up, therefore, thight bounds are introduced around the given estimates. CONOPT4 is usually able to improve the feasibility slightly over CPLEXD, such that first CPLEXD is used in that step – it is faster – and a second go with CONOPT4 starting with the solution of CPLEXD is appended. These two additional steps after the true balancing problems clearly require some extra time but prevent tiny imbalances in the SAM in later model runs. To improve the accuracy further, a generalized RAS is run over maximal 20 rounds if remaining differences in column and rows sum exceed 1.E-8. Generally, the imbalances in the resulting SAMs both in absolute and relative terms are quite low.

4.3 Split utility

The split utility (split\split.gms) allows to dis-aggregate the global SAM generated by GTAPAgg to further detail. It splits commodities and activities and rebalances the database using a mix of absolute and absolute normalized differences.

To understand the working of the split utility, consider the case where we take one activity in each region and the related output and split it into two activities each producing one new related outputs. Starting from the 57 GTAP sectors, we would add two new ones and remove one which is dis-aggregated in the new data base. The same holds for the products. SAM and other data base entries not referring either to the activity to split up or its output, i.e. product, remain untouched. For any SAM cell referring to that activity or its output, the new, more detailed SAM needs to provide a consistent dis-aggregation. At the same time, for the newly introduced columns and rows in the SAM, column and row sums must be identical. Additionally, auxiliary data not directly covered by the SAM such as direct and indirect tax rates differentiated by agent and by the imported and exported origin, bi-lateral import and export taxes etc. must be defined for the split-up activities and products such as to exactly exhaust the original, more aggregated data. As detailed below, that is achieved by defining these conditions as constraints of a programming problem.

The user of the split utility does not need to understand in the detail the set-up and solution of the programming problem as discussed below. He feeds a-priori information on split shares (or absolute values) and tax rates into the problem, minimally, it is sufficient to provide shares on output. That information is provided via GAMS code.

Examples for using the split utility can be found in the chapter relating to the FABIO Mrio, see "Linking the physical MRIO for agricultural and food products FABIO to CGEBox", pages 268ff. As detailed in that section, there is a ready-to-use link to that agri-food data base which only requires defining the mapping between the newly introduced activities and products to those found in FABIO. Another example of applying the split utility is found in Escobar, N., Haddad, S., Börner, J., Britz, W. (2018). “Land use mediated GHG emissions and spillovers from increased consumption of bioplastic”, Environmental Research Letters, who split up the chemical sector of the GTAP data base into Conventional plastics, Bio-based one and the rest of the chemical sector.

That allows defining the balancing problems as a Linear Programming problem which renders it possible to use performant LP solvers achieving a high accuracy. A former solution based on quadratic programming proved numerically less stable. For global SAMs with many regions while introducing at the same time many splits, the resulting data balancing problems can comprise several hundredth
Split utility

thousands of variables and equations. It is recommended to use CPLEX as a specialized LP solver for problems of that size even if CONOPT4 might also do the job. As GTAPAGG produces output which has been balanced (or at least stored) with simple precision arithmetic, the split utility will typically fail if the input data are not rebalanced based on the filter routine before as detailed above.

4.3.1 A complex example for a split

In the following, we discuss the input for a complex split example to help users developing their own split input. It introduces a difference between subsistence and commercial products in the SAM where only the commercial variant is internationally traded:

```plaintext
class i; end

set s_spliti / whit_sub-c "Wheat subsistence"
whit_com-c "Wheat commercial"

Along with related production activities:

set s_splita / whit_sub-a "Wheat subsistence"
whit_com-a "Wheat commercial"

These set definitions must be in a first block:

$iftheni_mode %l==decl
-

Where the subsistence variant uses little intermediate inputs. We first introduce assumptions on the output shares for the commercial variant and define the set of commercial activities as those where output shares are given:

```
table p_outputShare(splita, rNat)
     set. rNat
     whit_com-a 0.3
     pdr_com-a 0.3
     gro_com-a 0.3
     v_f_com-a 0.4
     osd_com-a 0.3
     ocr_com-a 0.5
;
set comm(splita) "Commercial variants";
comm(splita) $ sum(rNat, p_outputShare(splita, rNat)) = YES;
```

The distinction is deemed to be only relevant for developing countries. We therefore split the regions into two: those with a per-capita factor income above 2.500 $ and below, and set the output share for the non-developing countries to unity:

```
: *
: * --- Rest of the world and similar (check by counting the mapped original countries)
: *     is not split up
: *
: set restOfWorld(rNat);
: restOfWorld(rNat) $ ( sum( f,a, sam0(rNat,f,a) / pop0(rNat) > 2500 ) = YES;
: *
: set DC(rNat);
: DC(rNat) $ (not restOfWorld(rNat)) = yes;
: *
: p_outputShare(coma, restOfWorld) = 1;
```

In order to exclude international trade in of the subsistence product, we introduce “eps” for very small number as a split factor, and set the factor for the commercial variant to unity:
Based on the output share, we introduce assumption on intermediate input use:

$p_splitFactor(xNat,splitI,xNatI) \leq \sum_{i,a} \{splitI,subsA\}_1 = eps$;
$p_splitFactor(xNat,splitI,xNatI) \geq \sum_{i,a} \{splitI,coma\}_1 = 1$;

Similar statements introduce assumption on factor cost shares. The definition of the split factors must be introduced in a second block:

```gams
$elseif i.mode %i==run
```

The last block allows to introduce bounds and tax rates into the balancing problems after the split-factors had been processed and a-priori values for the new SAM entries derived. In our example, we remove the fix bounds on tax rates and replace them by tiny ones, and next remove tax rates for home production (= subsistence products):

```gams
p\_mintx(DC,splitI,aa) $\sum_{i,a} \{splitI,subsA\}_1 = 0;
p\_dintx(DC,splitI,aa) $\sum_{i,a} \{splitI,subsA\}_1 = 0;

v\_mintx.fx(DC,splitI,aa) $\sum_{i,a} \{splitI,subsA\}_1 = 0;
v\_dintx.fx(DC,splitI,aa) $\sum_{i,a} \{splitI,subsA\}_1 = 0;
```

As the average tax for the subsistence and commercial has to exhaust the one found in the GTAP data base, the tax rates for the commercial one becomes an endogenous variables:

```gams
v\_mintx.lo(DC,splitI,aa) $(\sum_{i,a} \{splitI,coma\}_1 \leq p\_mintx(DC,splitI,aa)) = -1E+10;
v\_mintx.up(DC,splitI,aa) $(\sum_{i,a} \{splitI,coma\}_1 \geq p\_mintx(DC,splitI,aa)) = 1E+10;
v\_dintx.lo(DC,splitI,aa) $(\sum_{i,a} \{splitI,coma\}_1 \leq p\_dintx(DC,splitI,aa)) = -1E+10;
v\_dintx.up(DC,splitI,aa) $(\sum_{i,a} \{splitI,coma\}_1 \geq p\_dintx(DC,splitI,aa)) = 1E+10;
```

To avoid large deviations from the desired output shares, we introduce bounds on the sum of the row entries of the subsistence variant of each split-up activity

```gams
v\_rowSum.lo(DC,SubsA) $(p\_outputShare(\{SubsA,DC\}) > eps)$
= \sum_{a} (as\_a,SubsA,DC) * p\_outputShare(SubsA,DC) * 0.9;

v\_rowSum.up(DC,SubsA) $(p\_outputShare(\{SubsA,DC\}) > eps)$
= \sum_{a} (as\_a,SubsA,DC) * p\_outputShare(SubsA,DC) * 1.1;
```

Deviations from these bounds receive a high penalty during balancing. The program from which the example is taken can be found under “gams\build\split\split_subs_fab.gms”. In that directory, more examples can be found which can serve as the basis to develop own splits.
4.3.2 Balancing equations and objective function

The four core equations of the split program shown below ensure that the given entries in the SAM for a product or activity to split are exhausted by the newly introduced more dis-aggregated commodities or products. Here, $split_i$ are the newly introduced commodities and $split_a$ the new activities. The cross set is_i shows the link between the new commodities and the commodity to split while as_a catches the relations between the activities. SAM0 is the global SAM before splitting.

The first two equations related to products, excluding the case of intermediate input use of split-up activities (second dollar condition). The first dollar conditions make sure that only non-zero entries in the global data base are subject to a split. The parameter p_{sam0} comprise starting values for the new SAM entries, whereas v_{sam} are the endogenous new SAM entries subject to balancing.

Two further equations deal with activities. The first equation relates to input use. The first expression after the equal sign is the simpler case where the row is_i is not itself subject to a split. The second line refers to products which are themselves split up.

The split utility allows introducing a priori-information on bi-lateral import and export taxes, taxes on consumption for the split-up products as well as production taxes, factor taxes and subsidies for the split-up activities. If these are not provided, the rates for the products resp. sectors to split-up are used.

In order to balance indirect taxes by the different Armington agents, new parameters and variables are introduced: p_{dm0} and p_{mm0} are starting entries for the domestic and import demands to split, and v_{dm} and v_{mm} are the related variables subject to balancing. For case where neither case is relevant, the original data entries as read from GTAPAgg, i.e. $xdm0$ and $xmm0$, enter the RHS of the equation:

```plaintext
--- indirect taxes from given tax rates and estimated domestic and import use

e_intdx[rNat] $\sum(\text{taxes}(a), a) \cdot (\text{not sum}(\text{taxes}(a), a) \cdot \text{sum}(\text{taxes}(a), a))$
```

```plaintext
--- entries for split up products and/or split up activities

$= \sum(\text{taxes}(a), a) \cdot (\text{not sum}(\text{taxes}(a), a) \cdot \text{sum}(\text{taxes}(a), a))$
```

```plaintext
--- taxes linked to non-split up products for not split-up activities

$\sum(\text{taxes}(a), a) \cdot (\text{not sum}(\text{taxes}(a), a) \cdot \text{sum}(\text{taxes}(a), a))$
```
That solution requires some commenting upon. In order to use CPLEXD as an efficient solver, the constraints are kept linear, i.e. we do not define a product of the split up transaction such as the demand for the domestic origin v_{dm} multiplied with the related tax rate $dintx$. Instead, the a-priori chosen rate (either supplied by the GTAP SAM or introduced by the user) p_{dintx} is multiplied with the endogenous transaction v_{dm} and endogenous correction to the tax rate v_{dintx} is multiplied with the a-priori quantity p_{dm0}. Exhaustion of the given tax income reported in the GTAP SAM is ensured by an additional equation which split up the domestic demand at agents’ prices:

```plaintext
To avoid that tax rate become implausible high or low, two additional inequalities restrict their value relative to the tax base:
```

```
Similar equations are present for factor taxes and subsidies, production taxes and import and export taxes.
```

The global SAM does not comprise information of the domestic versus imported use of the different Arminington agents, see also above. Maintaining the balance here requires additional equations. The first one makes sure that the total use of product i by an Arminington agent aa – new and old commodities and sectors are considered - is exhausted by domestic and imported consumption:

```plaintext
The import and export tax equations are defined as follows, where the first equations defines all import taxes related to split-up products and the second exhaust for each bi-lateral flow the import taxes comprised in auxiliary matrices. Note that the definition during the solve of the parameter $imptxY0$ for the products to split-up – i.e. the given values – refers to the total transaction, while for split-up products to the tax rates. As explained for the indirect taxes above the endogenous tax rate is defined implicitly from two terms which both multiply a constant with an endogenous variable:
```

```plaintext
```
Besides the exhaustion condition for the original cells, the column and row sums for the newly introduces commodities and activities must be equal by definition. One could naturally delete the \(v_{\text{rowSum}} \) variable altogether which would save equations and variables in the overall split program. It turned however useful in certain cases to control the sums, e.g. if information for the production value of a split-up activities is to be closely maintained.

Further equations ensure that F.O.B. price plus margins are equal to the C.I.F. price, assuming that the per unit margin \(x_{\text{marg}0} \) is the identical between the split up commodities. Note that the order of the regional indices is reverted: the LHS has the exporter region \(r_{\text{Nat}} \) on the first index to depict the value at F.O.B. prices, the RHS has the importer index \(r_p \) first to depict the value at C.I.F.:

Equally, the given imported \(x_{\text{m}0} \) and domestic \(x_{\text{d}0} \) use for each product in the original SAM for the Armington agents needs to be exhausted:
The imported use for the newly introduced commodities, added up over the Armington agents, must be equal to the bi-lateral imports at c.i.f. prices plus import taxes:

```
  e.imp(rUn(rNat), spliti) $ (card(rUn)) gt 1 ..
  (SUM fixed in single country solve)
  -- imported use
  sum(ia $ p_sm0(rNat, spliti,ia), v_sm(rNat, spliti,ia))
  sum(r0 $ p_sm0(rNat, r0, spliti), v_sm(rNat, r0, spliti)) + (SUM ia $ p_sm0(rNat, r0, spliti) $ sm0(rNat, r0, ia))/p_sm0(rNat, r0, iia));
```

Finally, the market balance for the new commodities must hold:

```
  e.mkt(rUn(rNat), spliti) ..
  * -- domestic use
  [ sum(ia $ p_dm0(rNat, spliti, ia), v_dm(rNat, spliti, ia))
  * -- exports
  + sum(r0 $ p_sm0(rNat, spliti, r0), v_sm(rNat, spliti, r0))
  * -- exports taxes
  - v_sm(rNat, *exptx*, spliti) $ p_sm0(rNat, *exptx*, spliti)
  ]
  * -- output
  =E= sum(splita $ p_sm0(rNat, splita, spliti), v_sm(rNat, splita, spliti));
```

It turned useful out to introduce bounds for factor use cost shares:

```
  e_shareLo(rUn(rNat), consider(is, splita)) $ (p_sm0(rNat, is, splita) $ (p_shareLo(rNat, is, splita) ne 0)) ..
  p_shareLo(rNat, is, splita) * v_rowsum(rNat, splita) =E= v_sm(rNat, is, splita);
  e_shareUp(rUn(rNat), consider(is, splita)) $ (p_sm0(rNat, is, splita) $ (p_shareUp(rNat, is, splita) ne 0))
  $ (p_shareUp(rNat, is, splita) ne 1)) ..
  p_shareUp(rNat, is, splita) * v_rowsum(rNat, splita) =E= v_sm(rNat, is, splita);
```

The objective function minimizes absolute (normalized) deviations between the desired new SAM entries \(p_{sam0} \) and the endogenous entries \(v_{sam} \) which fit into the equation system defined above. In order to do so, we need to define separate variables for the positive and negative deviations:

```
  e_samSlack(rUn(rNat), considerHFD(is, js)) $ (p_sm0(rNat, is, js) and (not sam0(rNat, is, js))) ..
  v_sm(rNat, is, js) + v_samSlackP(rNat, is, js) - v_samSlackN(rNat, is, js) =E= p_samCor0(rNat, is, js);
```

These slack variables enter the objective function:

```
  + sum( (rUn(rNat), considerHFD(is, js)) $ p_sm0(rNat, is, js),
  (v_samSlackP(rNat, is, js)+v_samSlackN(rNat, is, js)) / abs(p_sm0(rNat, is, js)) * 1)
```

Along with similar entries for the tax rates. To avoid that tiny imbalances left in the global SAM to split up prevent finding a solution, tiny slacks for the production activity related SAM entries to split up are introduced.

As detailed below, \(p_{sam0} \) and \(p_{samCor0} \) are identical for larger starting values of the split-up SAM entries, but changed to favor sparsity for very small ones. The objective function minimizes squared relative differences, in order to prevent that deviations for quite tiny entries are too important, the
normalization adds one dollar to the absolute value of the starting value \(p_{sam0} \). The second term in the LHS only scales the objective function to improve overall scaling, it counts the non-zero entries and divides the sum by factor ten.

4.3.3 Preparation of the split factors

The minimum information required to perform a split are split factors for the production values. These factors do not need to add up to the unity, one could also enter totals as the GAMS code will scale the sum of the split factors for each SAM cell to unity.

If no split factors for the four following demand categories are given:

```gams
set dem(is) / hhstd.gov.inv,int /
```

The program will use the related split factor for output instead:

```gams
* --- if split information of final demand category is missing, use output factor instead
* p_splitFactor(rNat,splitI,dem) $ (not sum(is_i(splitI,i)) $ is_i(splitI,i), p_splitFactor(rNat,splitI,dem))
  = sum(is_i(splitI,i), p_splitFactor(rNat,splitI,"prod"));
* --- if splitfactor is still missing, assume equal shares
  p_splitFactor(rNat,splitI,dem) $ (not sum(is_i(splitI,i)) $ is_i(splitI,i), p_splitFactor(rNat,splitI,dem)) = 1;
```

Split factors below 1E-5 will be deleted; however, “eps” entries which imply that the split factor should be zero in the final solution are maintained:

```gams
p_splitFactor(rNat,splitI,is) $ ((abs(p_splitFactor(rNat,splitI,is)) le [eps])
  $ |p_splitFactor(rNat,splitI,is| ne eps}) = 0;
```

Afterwards, the non-zero split factors for the demand categories are scaled to unity:

```gams
p_splitFactor(rNat,splitI,is) $ ( |p_splitFactor(rNat,splitI,is| ne eps})
  = p_splitFactor(rNat,splitI,is) / sum(is_i(splitI,i) $ is_i(splitI,i), p_splitFactor(rNat,splitI,is));
```

These two statements are repeated to decrease the chance of very tiny split factors. That logic is also applied for split-factors on output “prod”, and for intermediate input use and output of commodities. Attention: the order of column and rows in the split factors are reverted compared to the SAM to ease their handling in calling programs, i.e. \(p_{splitFactor}(rNat,splitA,is) \) refers to the use of row \(is \) in the activity \(splitA \).

4.3.4 Solution process

As seen from the equation structure above, the constraints are kept linear to ease solving the problem. As the objective function is linear, besides CONOPT as the default solver user in CGEBox, also highly performant LP solvers such as CPLEX can be used. That has shown to speed up dramatically splitting up SAMs with many sectors and regions where the rebalancing problem comprises several 10 thousands of variables and equations. The QP solver (CONOPT4 or CPLEX) can be chosen on the interface and will be used as the LP solver for the split. In order to speed up the solution process, the split factors are used to define starting values for the new SAM entries \(v_{sam} \), for instance:

```gams
v_sam.I(rNat,splitI,a) = sum(is_i(splitI,i), sam0(rNat,i,a) $ p_splitFactor(rNat,splitI,"int"));
```

The same holds for other elements such as domestic and imported use of the Armington agents, for instance:
In order to avoid that, for instance, tiny split shares in production lead to extremely small SAM entries in intermediate consumption, entries with a values < 1 USD cent are pulled to zero. That has shown to help with sparsity issues:

```plaintext
--- pull tiny SAM entries to zero (sparsity), units USD - all < 1 cent is pulled towards zero
p_samCor0(rMat, is, js) $ (p_sam0(rMat, is, js) gt 0) $ (p_sam0(rMat, is, js) lt 1.E-2) = -1;  
p_samCor0(rMat, is, js) $ (p_sam0(rMat, is, js) lt 0) $ (p_sam0(rMat, is, js) gt -1.E-2) = +1;  
```

The global SAM is solved several times, changing the option files used by the solver in case of numerical problems:

```plaintext
set tries / try1*try10/;  
scalar nTries / 0/;  
while { (nTries < card(tries))  
   and { (m_split.sumInfeas > m_split.tolInfeas*m_split.numEqu/1000) and (m_split.sumInfeas > 1.E-5)  
   or { (m_split.modelStat > 2) and (m_split.modelStat ne 7)  
}  
   }  
   $Sinclude 'util/title.gms' "Search feasible solution for split, nTry " nTries:0 0 "", sumInfeas " m_split.sumInfeas  
nTries = nTries + 1;  
};  
```

Several steps are taken to help with infeasibilities:

1. The option file is changed, option files with a higher number use less accurate feasibility requirement.

```plaintext
--- if the sum of infeasibilities is too high, relax accuracy of solver
```

```plaintext
IF { (m_split.sumInfeas > m_split.tolInfeas*m_split.numEqu/1000),  
   if (nTries > 2, m_split.optFile = 6);  
   if (nTries > 4, m_split.optFile = 7);  
   if (nTries > 6, m_split.optFile = 8; m_split.tolInfeas = 1.E-7);  
   if (nTries > 7, m_split.tolInfeas = 1.E-6);  
   if (nTries > 8, option LP=CONEOPT4;m_split.optFile = 8);  
};  
```

2. Requirements that costs shares must fall in a certain range are step-wise relaxed:

```plaintext
--- same if the solver reports some error
```

```plaintext
IF { (nTries > 2) $ (m_split.modelStat > 2), m_split.optFile = 6);  
   if (nTries > 4) $ (m_split.modelStat > 2), m_split.optFile = 7);  
   if (nTries > 6) $ (m_split.modelStat > 2), m_split.optFile = 8);  
   if (nTries > 7) $ (m_split.modelStat > 2), m_split.optFile = 9);  
   if (nTries > 8) $ (m_split.modelStat > 2), m_split.optFile = 8);  
```
3. Corrections to the desired taxe rates are step-wise relaxed:

--- give some freedom in tax bounds (ar pulled towards zero anyhow in objective)

```gams
if ( nTries > 2,
    $batinclude 'build\split_set_taxBounds.gms' 1.E-3
);
if ( nTries > 4,
    $batinclude 'build\split_set_taxBounds.gms' 1.E-2
);
if ( nTries > 6,
    $batinclude 'build\split_set_taxBounds.gms' 1.E-1
);
if ( nTries > 8,
    $batinclude 'build\split_set_taxBounds.gms' 1
);
```

If the final solution has still a sum of infeasibilities above a certain threshold, the program will abort with an error message:

```gams
IF { (m_split.numInfeas > m_split.tolinfeas*m_split.numInfes*10),
    execute unload "%scdir\split_dataset.gdx" v_sam.1,v_dm.1,v_mm.1,v_fShare.1;
    option QCP=conopt;
    solve m_split using QCP minimizing v bpd;
    abort "Split program could not balance SAM*; }
```

4.3.5 Processing the solution

After successful balancing, the information is copied to the SAM:

--- assing results from dis-aggregated SAM entries to global SAM

```gams
SAMO(rNat,consider(is,js)) = v_sam.1(rNat,is,js);
```

The same is done with the domestic and import use vectors, afterwards, the information for split up commodities is deleted:
There are further statements not shown which refer to the CO2 and Non-Co2 emissions factors, assumed currently to be equal across the split-up commodities respectively activities.

Furthermore, behavioral parameters are copied over, as well as taxes, and entries for the aggregate ones deleted.

Equally, trade margins are copied (not shown). Afterwards, the SAM entries for the split-up commodities and activities are removed and some SAM entries re-calculated to avoid problems from rounding errors in the solution process.

--- remove SAM entries referring to aggregated rows and columns

--- Government account Taxes

--- bilateral hps, hps and trade margins, and hps = foreign saving
There is a further section not detailed in here which handles the case of a non-diagonal make being introduced with the split.

4.4 MRIO split

The introduction of MRIO split values and the possibility to dis-aggregate commodities in the global SAM is discussed in some detail in section at the end of that documentation.

4.5 Post-aggregation of GTAPAgg to yield non-diagonal make matrices

The code of CGEBox clearly separates activities from products and supports non-diagonal make matrices where one activity might produce several outputs and one output might be produced by several sectors. The current GTAPAgg facility does not support such a differentiation. The data driver therefore allows the user to add aggregate definitions which define such relations. The necessary files must be stored under “gams\build\nonDiag”. An example is given to remove the differentiation between irrigated and non-irrigated crops in GTAP-Water:

```plaintext
* --- remove differentiation between irrigated and non-irrigated products
* but keep differentiation for activities => non-diagonal make matrix

mapi("pdrn","pdni-c") = YES;
mapi("pdrn","pdrn-c") = NO;
mapi("whtn","whti-c") = YES;
mapi("whtn","whtn-c") = NO;
mapi("gron","groi-c") = YES;
mapi("gron","gron-c") = NO;
mapi("v_fn","v_fi-c") = YES;
mapi("v_fn","v_fn-c") = NO;
mapi("osdn","osdi-c") = YES;
mapi("osdn","osdn-c") = NO;
mapi("c_bn","c_bi-c") = YES;
mapi("c_bn","c_bn-c") = NO;
mapi("pfbn","pfbi-c") = YES;
mapi("pfbn","pfbn-c") = NO;
mapi("ocrn","ocri-c") = YES;
mapi("ocrn","ocrn-c") = NO;
```

Note here: the first element refers to the original product in the GTAP data base, while the second indicates the aggregated products. The example hence assumes a 1:1 mapping in GTAPAGG for all the crops, maintaining the differentiation between irrigated and non-irrigated. That distinctions is now removed: the mapping to new products ending with “n-c” are deleted (= NO) and are mapping to the irrigated ones instead. As the activity aggregation is maintained, no further changes are required to let the code generate the desired non-diagonal global SAM.
4.5.1 Model size and solution behavior

The model template including the GTAP-AEZ and GTAP-AGR modules was intensively tested under a suite of test shocks, applied simultaneously to all regions and sectors: 50% reductions in tax rates (direct, consumption, factor, tariffs/export subsidies), 20% endowment changes and 10% tfp shocks for all primary factors. The model was tested in three configurations: (1) the GTAP standard model with fixed allocation of foreign savings and (2) alternatively the global bank mechanism as a default in the standard GTAP model, and (3) the global bank mechanism in combination with GTAP-AGR and GTAP-AEZ. The tests used a full sector dis-aggregation (57 sectors) and varyingly sized regional aggregations (10, 24, 36, 45, 56, 68). Additionally, a 10x10 model was solved for which the GTAP-AGR and GTAP-AEZ modules cannot be used due to missing sectoral detail. The parameterization was kept at defaults. Most of the tested models are large with regard to the number of sectors and countries compared to applications of GTAP reported in publications. All tests were also run solving the model as MCP in PATH and as a CNS in CONOPT.

GAMS version 25.5.4 was used, on a computer server, in combination with a beta-release of CONOPT4 which executes certain part of the NLP algorithm in parallel. We would like to acknowledge the continued support of Arne Drud, especially to let use CONOPT4 for the tests. Results with CONOPT3 are somewhat slower. The pre-solve algorithm with five pre-solve steps was applied. The aim of these tests was not only to ensure a stable numerical implementation of the model, but also to gain experiences with solution behavior on larger dis-aggregations. The times reported in the table below are for a full model run without post-model processing switch on, but including the time needed to store all symbols in a GDX container, i.e. they cover loading the database, model calibration, a benchmark solve and solving the shock. The test show the expected more than linear increases in solution time if model size and complexity expands. Solution times with a fast multi-core laptop will be about double the times reported below.

\[\text{21} \text{ The aggregation definition files (*.agg) used are found in the repository in the data directory. The test shocks can be found in the “scen” directory.} \]

\[\text{22} \text{ The distribution which includes the GUI also comprises the described above test suite for the model, realized as an input file for the batch utility (gui\testbatch.txt). It is recommended to run the test suite after changes to the model code.} \]
Post-aggregation of GTAPAgg to yield non-diagonal make matrices

Table 2: Data bases used in the standard tests

<table>
<thead>
<tr>
<th>Model size</th>
<th>Filtering thresholds (relative tolerance, minimum # of transactions)</th>
<th>Resulting non-zeros in global SAM, including trade flows</th>
<th>Model size (GTAP Standard, maximal number of variables substituted out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x10</td>
<td>None</td>
<td>~4.700</td>
<td>~8.000</td>
</tr>
<tr>
<td>57x10</td>
<td>None</td>
<td>~35.000</td>
<td>~92.000</td>
</tr>
<tr>
<td>57x24</td>
<td>None</td>
<td>~157.000</td>
<td>~225.000</td>
</tr>
<tr>
<td>57x36</td>
<td>1%, 160.000</td>
<td>~120.000</td>
<td>~96.000</td>
</tr>
<tr>
<td>57x45</td>
<td>1%, 160.000</td>
<td>~130.000</td>
<td>~99.000</td>
</tr>
<tr>
<td>57x56</td>
<td>1%, 160.000</td>
<td>~133.000</td>
<td>~98.000</td>
</tr>
<tr>
<td>57x68</td>
<td>1%, 160.000</td>
<td>~135.000</td>
<td>~99.000</td>
</tr>
</tbody>
</table>

Note: The number of transactions accounted for during filtering is somewhat higher than the resulting non-zero SAM entries.

Many of the test solves will actually run even somewhat faster without the pre-solves switched on. However, if the solver fails to solve the shock without any pre-solves quickly, it can often spend several minutes until all infeasibilities are removed. As the potential further gains in solution speed by switching off the pre-solves are limited, we opted to show in here results obtained with the default settings. For small models and special applications such as sensitivity analysis, it might however pay off to check if the overhead of using the pre-solves can be avoided.
Table 2: Solution time with different data bases and model configurations, CNS

<table>
<thead>
<tr>
<th>Data base</th>
<th>GTAP Standard, Fixed allocation of global savings</th>
<th>GTAP Standard, Global bank mechanism</th>
<th>GTAP Standard + GTAP-AGR+GTAP-AEZ, Global bank mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x10</td>
<td>10 sec</td>
<td>10 sec</td>
<td>(not possible)</td>
</tr>
<tr>
<td>57x10</td>
<td>30 sec</td>
<td>30 sec</td>
<td>35 – 45 sec</td>
</tr>
<tr>
<td>57x24</td>
<td>1 min 30 sec</td>
<td>1 min 30 sec – 2 min</td>
<td>1 min 40 sec – 2 min 30 sec</td>
</tr>
<tr>
<td>57x36</td>
<td>1 min</td>
<td>1 min – 1 min 30 sec</td>
<td>1 min – 1 min 30 sec</td>
</tr>
<tr>
<td>57x45</td>
<td>1 min 10 sec</td>
<td>1 min 10 sec – 2 min</td>
<td>1 min 15 sec – 3 min</td>
</tr>
<tr>
<td>57x56</td>
<td>1 min 20 sec</td>
<td>1 min 20 sec – 3 min 20 sec</td>
<td>1 min 20 sec – 3 min 20 sec</td>
</tr>
<tr>
<td>57x68</td>
<td>1 min 30 sec</td>
<td>1 min 30 sec – 3 min</td>
<td>1 min 30 sec – 11 min23</td>
</tr>
</tbody>
</table>

Even if additional tests showed that rather large models such as a 57x82 variant can be solved even without any filtering at least on some larger shocks in around ten minutes, some of the shocks tested failed with a model using the full resolution of the data base (57x134), but also with certain larger shocks on the 57x82 variant in any reasonable time. The tests were only possible with the beta version of CONOPT4 which is distributed with newer GAMS versions, as CONOPT3 will exceed its internal memory limit of 8GB on very large models (around 600,000 equations which implies a SAM with about the same number of entries). That implies that users might run into very long solution times under a combination of larger shocks and very detailed data bases or might even not be able to load the model into the solver.

Analysis of changes in simulated welfare changes under a multi-lateral trade liberalization scenario which dismantled 50% of all import tariffs and export subsidies indicate that filtering can influence substantially results obtained. Unfortunately, the same holds for changing the regional and sectoral resolution of the model. We can therefore generally only recommend running highly dis-aggregated models with limited filtering. For further detail on solution times and aggregation bias due to sectoral and regional aggregation or the use of filtering, refer to Britz et al. 2015 who provide a larger sensitivity analysis with the standard GTAP model in GAMS.

The tests have shown that in combination with the pre-solves, solving the model as a CNS with CONOPT is usually faster if the model is larger compared of using PATH and solving as a MCP. Very small models are typically faster solved with PATH. Having both solvers available for tests might

23 The long solution times occurred under the direct tax cuts. As the standard GTAP model assumes that FDI is taxed at the same rate as domestic one, the direct tax cut impacts fully the expected returns to capital by foreign investors which drive the distribution of foreign savings under the global bank mechanism. A 50% reduction as simulated in the test shock can provoke very large differences in expected returns depending on the regional resolution of the data base. Thus, a new equilibrium can require massive changes in investments to decrease or increase the regional capital stock in order to drive marginal returns to capital up and down towards the global average. For some regions, that scenario might not feasible without fixing some variables at their bounds. Solving the model as a MCP should yield automatically that solution. However, solving as a CNS will yield infeasibilities in that case. Therefore, an algorithm is comprised in the GAMS code which tries to find, based on equations becoming infeasibility, which variables to fixed, which however requires to solve the model potentially several times. That algorithm can also fix similar problems which might not be related to the global bank mechanism.
hence pay off if solving large models is part of a project. And clearly, certain policy instruments such as production quotas are best captured by a KTT-condition embedded in a MCP model. Note that the GUI allows letting the model first be solved with CONOPT (as a CNS), and if that fails, to try a test with PATH (as MCP):

Checks for medium sized models have shown no differences in the results produced by CONOPT or PATH. That seems to indicate that once a model is declared feasible, the results can be used. Care should be clearly given when using PATH as a MCP solver after structural changes to equations: MCP solvers might e.g. accept a fixed variable paired to an equation which results in a non-square system, whereas solution as a CNS will throw an error in that case.

4.6 Inspecting the resulting data base

You can check if loading and filtering worked by pressing on “Exploit results”, selected as shown as output file generated, a GDX comprising different parameter and set definitions:

Once you press “Load content of files into GDX viewer”, you can inspect the individual symbols used in the model:
Double clicking on any on the symbols in the table on the RHS will open a new window as shown above.

The effect of using filtering and the rebalancing can be checked with the symbol “itrlog” which shows totals, aggregated over commodities or sectors, for each rebalancing step (per country and “trace” at global level), the number of nonzero at global level and related changes. The example below shows the output from filtering a 32x34 case. Filtering removes about 76% of the original almost 135,000 non-zero items (see row “Total”). The line “curRelTol” shows the applied threshold in the iteration, which is increased stepwise to the desired maximum of 0.25%. Inspecting the relation between the dropped items and the cutoff used in that preliminary iteration can help to find a good compromise between model size and a too aggressive filtering where also more important transactions are wiped out.

4.7 Pre- or post-model aggregation

The standard case in GTAP applications is a project specific pre-model aggregation. Given the total size of the data base – there are already about 1 Million non-zero trade flows reported – pre-model aggregation can be hardly provided, it yields smaller models which are faster to solve, easier to debug and typically also numerically more stable with less small values being present. However, aggregation comes clearly at a price: not only might detail of interest for the application be lost, but also peaks of...
policy instruments etc. wiped out. That can have important effects, Ko and Britz 2013 show in example applications that one might increase considerably simulated welfare from FTAs by simply increasing sectoral and regional detail.

CGEBox tries to soften the decision on what regional and sectoral aggregation level to use based on three features. Firstly, filtering and rebalancing of a data base can help to solve models with rather high number of sectors and regions (but clearly, the filtering process will also introduce aggregation bias). Secondly, the equations of the model had been carefully arranged; additionally scales and bounds for variables are introduced to stabilize the solution behavior of the solvers and to speed up solution time. And thirdly, post-model processing allows for a second aggregation step for reporting purposes. To do so, the user has to provide a second aggregation definition file (*.agg, can be produced by GTAPagg). See also Britz et al. 2015 for discussion of solution times and aggregation bias.
5. Scenario runs

5.1 Defining the scenario

5.1.1 Implementation of shock files in GAMS

Running shocks with a CGE (or more generally an equilibrium model) is strongly related to the concept of a partition which defines what is endogenous and what exogenous, also called closure. Different closures reflect that such a model comprises many variables or parameters, much more than equations. All these variables and parameters are possible candidates to become endogenous which implies that they will adjust to the shock while the exogenous ones will stay unchanged. Solving the model requires fixing exactly so many variables or parameters that the remaining number of endogenous variables is exactly equal to the number of equations. Fixing more than the number of equations will typically lead to infeasibilities, fixing less generally implies that the solution is not unique. Besides offering some defaults closures on the interface, the user can also provide its own closure files.

In both cases, shocks are only possible for non-endogenous elements of the model which can be technically either GAMS parameters or fixed variables where the lower is equal to upper bound. A symbol defined in GAMS as a parameter can however never become an endogenous variable. A shock file redefines the level of parameters in the model or fixes exogenous variables to a different value, away from the benchmark level. Consequently, the benchmark results of the endogenous variables do not longer provide a solution to the equations. The solver needs hence to search for a new combination of values for the endogenous variables which provide a fix-point for the new exogenous values.

The installation comprises a set of example shock files of which we discuss here two. We start with a shock which reduces all bilateral import tariffs and export subsidies, a partial multi-lateral trade liberalization (see gams\scen\policy_shocks\tarifs.gms). Such a shock file is always structured in two parts: a section which declare symbols, called before the solution loop, and a section, executing during the simulation loop, where parameters or fixed variable levels are updated.

The declaration section starts with the pre-processor command “$ifthen ” includeMode”==”decl”, that statement is necessary and must be found in all shock files. In our example below, we declare two parameters, one for shocking the import tariffs (p_taxShockTariffs) and one for shocking the export subsidies (p_taxShockExpSubs). As these parameters are only used in the shock file, their names can be freely chosen by the user as long as they do not clash with other symbol names. In our simple example below, we shock all exporters (first dimension), importers (third) dimension and products (second dimension), reducing the taxes and subsidies by 50%. In the delaration part, we only define the size of the shock and what to shock, it is not yet applied to parameters or variables in the model. The declaration code alone would hence not force the model away from the benchmark.
Defining the scenario

The second part after the $else statement applies the defined levels of the shock to re-define new fixed levels of the two variables \textit{imptx} and \textit{exptx} on the LHS. That will lower as a first order effect the import prices faced by demanders and the tax income of the governments with subsequent second and third round effects towards a new equilibrium.

The RHS of the assignments shown below reduces the benchmark level ("%0\%" is either the year “t00” in a recursive-dynamic run or the benchmark point “bench” in a comparative static one) of the exogenous variables according to the desired shock, implementing it in equal steps over the simulation horizon. How that stepwise application of the shock is programmed in GAMS is discussed next. The set \textit{tSim} in a comparative static simulation only comprises two elements, “bench” and “sim”. The shock file is only called for “sim” to leave the benchmark point unchanged; the position of the element “sim” in the set \textit{tSim} is second. Hence, \textit{tSim.pos-1} yields unity. The divisor is the number of elements in the set, i.e. \textit{card(tSim)}, minus one, which is also equal to unity. The code will for a comparative-static run multiply the shock as declared in the parameters above with one, in other words, it is fully applied in the one and only simulation run with the model.

Now, we look at the case with a recursive-dynamic run over 10 years, the elements in the set \textit{tSim} would be called \textit{t00}, \textit{t01}, ..., \textit{t10}. If the driver calls the code for the element \textit{t01}, which is the second element in the set, the numerator is (2-1) = 1 as in the example above while the denominator is (11-1)=10, such that 10\% of the shock will be applied. In each year, the numerator will increase by one, such that in the next year 20\% of the shock will be present and so forth.
The mechanism with the step-wise changes can also be used in a pseudo recursive-dynamic run without capital accumulation or other features relating to dynamics. In that case, the sole purpose is to apply not the full shock in one go to the model. That might ease solving strong shocks on complex models. Similar files are available which define shocks consumption, factor and direct taxes.

Another type of often applied shocks changes productivity levels. The related variables are mostly called lambda + postfix, where the postfix is the name of the variable to shock, as shown in the table below:

<table>
<thead>
<tr>
<th>Shifter variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>axp(r,a,t)</td>
<td>Production function frontier</td>
</tr>
<tr>
<td>Lambdand(r,a,t)</td>
<td>Demand for intermediate demand composite</td>
</tr>
<tr>
<td>lambdava(r,a,t)</td>
<td>Demand for value added composite</td>
</tr>
<tr>
<td>lamdaf(r,f,a,t)</td>
<td>Factor demand, separate for each factor</td>
</tr>
<tr>
<td>lambdaiio(r,i,a,t)</td>
<td>Intermediate demand, separate for each commodity</td>
</tr>
</tbody>
</table>

The code below shows the content of the example file “gams\scen\end_andTp_shocks\factor_specific_Tp.gms”. If increases the factor productivity for all regions, activities and factors by 10%.
Defining the scenario

Note again the dollar operation \(\$ p_{tpf}(r,f) \) on the LHS. That ensures that only non-zero changes are used in the shock. If, for instance, values for \(p_{tpf} \) are only found for one region, the productivity shifters for all regions will stay at their benchmark point. The usual way for the experienced coder is to define shock files in text editor such as GAMIDE, alternatively, the simpler build in scenario editor can be used.

The most important step after a shock was run is to make sure that the desired changes show up in the model. One way to do so is to let the GAMS code store all symbols into a GDX file (see also next section). Opening a symbol such as \(\lambda \) in the example above should then show the desired change from the benchmark to simulated point. Productivity shifters and tax rates can also be inspected by pre-define views in the exploitation tools.

5.1.2 Scenario editor

The interface helps with the definition of scenarios – it has a set of example files with shocks which can be combined and edited directly in the GUI. Alternatively, you can use any text editor and define a shock in GAMS and store the file somewhere under “\gams\scen”. That is the recommend way to work in order to define complex scenarios and for users familiar with GAMS coding. In order to use the in-built scenario editor instead, click on “Define scenario” and the interface should look like below.
Currently, there are two base scenarios:

- **No shock** – that is simply an empty file
- **RecDyn** – a test implementation for a driver for a recursive-dynamic baseline.

- In order to add the content of pre-defined shock files to your base scenarios, click on a tree element, e.g. “Endowment and productivity shocks”. You should be able to see a list of files as below:

 Double-click for example on “Factor specific TP”, and the content of that file is loaded in the editor on the right as seen below:
You can now modify the content with the editor by typing directly in the right hand window. Once you have edited the code, additional buttons will appear:

The list with the scenario groups and shock files will now indicate that you have made changes to the shock file.

In order to save your edits, press “Save changes”. If you do not press “Save changes”, your edits won’t make it in final shock file generated. You can now double click on further files to add them to your shock file. The files you have currently combined are shown in blue; you can also deselect some of these files again. Files which were edited by you (only a temporarily copy is changed) have a “(user modified)” appended to their name. Edits in such files are shown in blue (in the example below, the factor 1.1 was changed to 1.2).
Once you have chosen the files you want to combine and potentially edited (and saved!) your changes, you should now enter name for the shock file to create, e.g. TFP20 and a description of the scenario as shown below:

Afterwards, press “Store scenario”:
Running the scenario

The window shows now the file as stored in the disk and included by the standard GTAP in GAMS model driver, when you use it to run a scenario.

Notes:

1. The scenario editor can also be used to edit parameters settings for the model. Several files which show the parameters used in different modules are provided.
2. Unchanged files are inserted in the new shock file with include statements, otherwise, the full content of the file with your edits is comprised in the new file.
3. The new file is stored in the directory “gams\scen\user_scenarios”.

5.2 Running the scenario

In order to use the GTAP Standard configuration, check the box “Use pre-defined configurations” and chose “GTAP Standard”:

In order to run the scenario, click on “Simulation”, select first the directory with the user scenarios as shown below, and then pick the second box with scenario you just generated

232
and press the “Start GAMS” button.

That should run your counterfactual against the reference and generate results in a GDX file.

The tab “General settings” gives you the following additional input possibilities:

- **Entering a scenario description:** Normally, the output files generated are named after the scenario file used. That name can be overwritten with the content of that text field.
- **Post fix for result files:** The postfix is appended to the names of the output files. It can e.g. be used to differentiate versions using the same shock, e.g. results generated based on different closures or by using different modules.
- **Choice between the Comparative static or Recursive dynamic version of the model:**

If the “Recursive dynamic” option is switched on, the following options are shown:

1. The number of years defines the simulation horizon.
2. The time resolution defines which years of the horizon are simulated (time steps). The first and last year are always included.
3. The report frequency defines for which of the simulation years the results are saved.
4. “Mimic comp-static” allows switching off capital accumulation such that a comparative-static model is solved in several steps. That is useful for step-wise introduction of shocks.

- **Choice between the Global Model or Single Region version of the model:**

If the single region mode is switched on, a drop down box appears where the region can be chosen:
Running the scenario

Furthermore, the way international prices and related to that, how import and export flows are treated can be chosen:

- **CET/CES**: Imports to other regions react to changes in the region’s cif prices according to the share equations of the lower Armington nest at fixed total import quantities and aggregate import prices. If CET elasticities for exporters to the region are not infinite, the lower CET nest at the export destination are active and fob prices react accordingly. Otherwise, they are fixed.
- **Elasticity driven**: in that case, aggregate import and export prices of the region are driven by iso-elastic functions of the region’s total import and export, respectively.
- **Fixed**: import and export prices of the region are fixed. That will typically only make sense if a CET between domestic and export supply is active.

The reader should note that the alternative to a single region model is a layout with a two-region aggregation: the single region against all other regions. That will automatically reflect cases where the small country assumption makes limited sense.

- Choice between the *General Equilibrium* or *Partial Equilibrium closure* of the model:

The GE closure is the usual set-up for a General Equilibrium model. The PE closure allows solving for only one; several or all commodity markets while clearing factor market at fixed income. The product markets which clear can be chosen on the tab “PE”:
Please note that the usual welfare interpretation of a CGE is no longer valid if income is exogenous and/or only some markets clear.

5.3 Output options

Also, make sure that output for the GUI is selected:

- CSV will generate a SAM and some other core results and store it in CSV format under “results\run”
- GUI will generate a GDX container with a parameter for use with the exploitation tools (see below)
- GDX will store all other GAMS symbols (parameters, variables, equations, sets etc.) in a GDX container, including output for the GUI if selected
- CONVERT will generate output for the “Equation and Variable viewer” which is similar to AnalyseGE (see section below).
- AlterTax will store the generated SAM and some vectors back in a format which can be used as input for the model and thus allows constructing a new benchmark based on a model run.
- SolveReport will store during simulation a parameter p_solveReport in a GDX file in the scratch directory, for instance, to track the behavior of the model in recursive dynamic run. The user can add, separated by comma, further symbols to be stored in the GDX container.

Usually, “Store benchmark” should be switched on. If you are not interested in a graphical depiction of flows and price changes (see chapter “Overview on existing views for exploitation” below), you can deselected these options to save some memory and speed up post-model processing. The same holds for the decomposition of the welfare changes. For a description of the “Trade in VA indicators”, see the respective section.
The same holds for the post-model aggregation. The screenshot below shows what post model aggregation contributes: in most views, results are not only available in the regional and sector disaggregation of the underlying data base, but additionally also aggregated results as shown below.

5.4 Model structure, parameterization and factor markets

You might also select from different model setups:

5.4.1 Modules and parameters

Currently, different modules and extensions as shown above can be added to the GTAP standard model. Please note that these modules are not a full replica of the GEMPACK implementations. The labor nest – which is also part of GTAP-E – depicts substitution between skilled and unskilled labor. The “CapSkLab nest” depicts substitution between capital and skilled labor.

The “Aggregate intermediate demand” extension reduces the number of Armington agents to four: final, government and investment demand and aggregate intermediate demand. The latter replaces the
sector specific nests in the GTAP standard model. “Aggregate Armington” makes a step further by using the same shares for domestic and import demand for all agents.

GTAP_NUTS2 (see section “Sub-regional dis-aggregation of production and factor markets in CGEBox”, page 98ff) provides a dis-aggregation of the production function and factor markets to sub-regions, assuming homogenous output products from the regions in a nation. Given current data availability, that module works for European countries, only.

In order to introduce non-default parameters (such as a CET or non-zero substitution between ND and VA), switch “Parameters”

![Modules and parameters](image)

and selected the desired file on the “Parameter and Indices” tab, see section 5.6.1, page 239.

5.4.2 Demand system

The modular approach covers also the choice of the demand system for private households. Specifically, the standard CDE demand system found in GTAP can be replaced by a Linear Expenditure System or a Cobb-Douglas representation.

![Demand system](image)

The LES system will determine the marginal budget shares based on income elasticities derived from the parameterization of the CDE demand system. The commitment terms are derived by assuming an 80% share of non-committed income, ensuring that commitments are non-negative and do not exceed 50% of observed demand quantities. The CD system uses the observed budget shares to determine the share parameters.

The tolerance for small imports steers the third level of the Armington system and additionally the CET, if switched on. The option can only be activated as developer and otherwise not visible.

![Third level Armington/CET](image)

That features found in GLOBE uses a Leontief relation between total imports respectively exports and small trade flows. That can overcome numerical stability issues with tiny trade flows and decreases overall model complexity. The user should note that it is not possible to use simultaneously a Leontief relation on the import and the export side for the same flow. Therefore, the code will not use the Leontief on the export side if already active on the import side.

5.5 Factors

The first selection possibility allows defining which factors are mobile – potentially combined with a CET approach to model sluggish factor mobility – and which are sector specific and thus immobile.
The second selection allows fixing factor prices - either economy wide or sector specific, depending on the choice above – such that their stock is endogenously adjusting. That is an often found solution to model unemployment based on a fixed wage rate. The reader should note that the model can also be parameterized with factor supply elasticities to model e.g. a wage curve approach or to introduce a land supply curve.

5.6 Parameters and indices

What is shown on the panel depends on wether the “Parameters” module is switched on and if the user the registered as a developer or not.

5.6.1 Indices

The indices are only visible for a developer; otherwise, all products and regions are used as a default. The selection of parameter files was discussed above.

5.6.2 Scenario drivers

The scenario drivers allow to write text directly in the include file. Consider the following example:

The input from the interface is directly inputted in the include file “com_inc.gms”:

```plaintext
* ---- Scenario drivers
$setglobal myTax:shock 0.5
```
That allows to e.g. use that global variables in a shock file to change the size of the shock without the need to modify the GAMS code. That for instance the following extension of the example shock file “scen/policy/tariffs.gms”:

```gams
impmtx.fx(r,i,rp,tsim) $ (impmtx.l(r,i,rp,tsim) $ p_taxShockTariffs(r,i,rp))
   = impmtx.l(r,i,rp,"%TO%")
*   * --- this distributes the reduction in equal steps over the
*   * simulation horizon (or in step-wise shocks to ease solving
*   * if mimic comp-static is switched on)
*   * (1-$\text{bytaxShock}$)*p_taxShockTariffs(r,i,rp) * (tsim pos-1)/(card(tsim)-1));
```

The global variable is here introduced to change the size of the shock directly from the interface. That option is helpful for batch files to run multiple variants of the same basic shock as shown below. Note that the names after the $setglobal can be chosen by the user as preferred.

```gams
for trade = 0 \ 1
for migr = 0 \ 1
for savf = 0 \ 1
   ScenDriver1 = $setglobal scenDriver1 %trade%
   ScenDriver2 = $setglobal scenDriver2 %migr%
   ScenDriver3 = $setglobal scenDriver3 %savf%
   ScenDriver4 = $setglobal scenDriver4 %trade%
   batchName = brexit_t%trade% m%migr% s%savf% n%trade%
   Scenario description = brexit_t%trade% m%migr% s%savf% n%trade%
   execute = GamsRun
endfor
endfor
endfor
```

5.6.1 Parameters

Non-Default parameter files can be used with the model if the module “Parameters” is switched on. In that case, the tab parameters and indices allows to selected up to 5 different files which comprises changes to the default parameterization:

These files are stored in the directory “gams\scen\Parameters”. The user can hence change existing files or add new ones which then can be selected from the interface.

The possibility to use non-default parameters is important as certain model extensions are driven by parameter settings. To give an example: in the standard GTAP model, the transformation elasticity between domestic output and exports is infinite, such that producer prices between the two destinations are equal and physical balancing is used. The GAMS version allows alternatively using a CET structure where prices differs and consequently, a non-linear quantity aggregator is used. That feature can be switched on by providing a parameter file in GAMS format where a CET elasticity different from infinity is set.
Closures

Note: Modules and extensions and the use of non-default parameters are disabled if pre-defined configurations are used.

5.7 Closures

As shown above, the code supports alternative closures different from the ones used in the standard GTAP model:

- For foreign savings, besides the default global bank mechanism which leads to identical expected returns to capital across all regions, the model can run with a fixed global allocation of investments and with fixed foreign savings. These closures are only available in the global model set-up. The balance of trade (BOP) solves for the exchange rate, it requires that the factor price index is used as the regional numeraire.

- The standard closure for the government account is to calculate tax income at given tax rates, and to let the top level utility function allocate a certain share of regional income to government consumption. The reader should note that there is no immediate relation between changes in tax income and government consumption. Changes in government consumption relative to private consumption and regional saving depend on the one hand on changes of the related price indices and on the other on the elasticity of the private consumption share to changes in overall utility. As such, there is no closed government account in the regional household approach, one could argue that implicitly government saving adjust. The alternative closures endogenize tax shifters either on all or selected products in consumption or for all or selected factors while keeping the real tax income for government consumption fixed, using the government price index to define real tax income. These two closures come closer to a representation of separate government account.

For the closures modifying taxes can be further detailed by applying the shifters. The closures where “savings” and “consumption” adjust are only available with the myGTAP extensions where a separate government account is present.
• The standard closure for **private consumptions and saving** is to have flexible budget shares for private and government consumption and regional savings. The alternative closures allow to fix private consumption spending and to let the saving rate adjust.

• The user can also use a regional reference price. That does not influence the results (quantities, welfare impacts), but simulated price levels will differ.

• For the single region layout, two closures for the current account balances are offered: either fixed foreign saving with a flexible exchange rate or the reverse combination.

Note: The pre-defined configurations also define specific closures.

The user can also provide its own closure file to introduce alternative and additional closures.

5.8 MRIO extension

Currently, the MRIO extension (for details see the section “MRIO extension”, page 107ff) lets the user solely depict the commodities for which bi-lateral import demand is dis-aggregated to total intermediate demand and each final demand agent:

The list of products shown adjusts dynamically with the data base chosen. Hence, check it when switching the data base.
Note that the MRIO extensions requires that MRIO split factors were generated during data base generation:

5.9 Imperfect competition model

Activating the Melitz module will generate a new tab with the following input possibilities:

Under Melitz commodities, the commodities / sectors can be chosen the parameter of the Pareto-distribution of the productivities defined.

The model allows for three different base configurations:

1. “Only aggregated demand, not heterogenous firms” changes the demand structure of the standard GTAP such that only one Armington nest shared by all agents is present. The substitution elasticity is defined as in the case when the full Melitz model is used. The remaining equations of the Melitz model are absent and replaced by the equations of the standard GTAP model. That allows dis-entangling impacts of the full Melitz model from the structural changes on the demand side.

2. “Krugman”: Monopolistic competition at industry level, the number of firms in each sector and region is endogenous and defines the number of varities.

3. “Melitz”: Melitz model with fix costs and number of firms operating differentiated by trade link, additionally to the industry detail from Krugmann.

The checkbox “Fix cost nest” introduces a differentiation between variable and fix costs input composites where the latter only comprises primary factors, at least as long as there is some minimal primary factor cost share left in the variable input composite. The spinner termed “Max cost share of HET domestic interm. demand” allows switching off love of variety for domestic intermediate demand by same industry depending on the costs share. Only sector-regional combinations with a share above the threshold will be excluded. Setting the threshold to unity will hence leave the love of variety effect switch on for all domestic intermediate demand, while zero will switch it off on all cases.

Note that with the MRIO extension switch one, bi-lateral demand by agent is not based on equal shares, but reflects the shares used in the MRIO-extension.
5.10 Pre-configurations

In order to replicate as close as possible some existing well-known global CGEs, pre-configurations are defined which use the modular structure of CGEBox to mimick these model.

5.10.1 Standard GTAP model

The details of the implementation of standard GTAP model in GAMS are not discussed in here, see Van der Mensbrugghe 2015. It is however worthwhile to note that using the pre-configuration does not substitute prices out such that the full equation system can be seen. This option will however slow down solution for large models.

5.10.2 GTAPinGAMS

The GTAPinGAMS by Tom Rutherford is quite similar to the standard GTAP model with however the following differences which are mostly simplification which render that model ideal as a didactic model:

- There is no global bank mechanism, foreign savings are fixed
- Regional savings and investment demand are fixed as well

5.10.3 GLOBE

The GLOBE pre-configuration uses the following attributes. The page numbers below relate to the following GLOBE documentation: McDonald S., Thierfelder, K. (2014): Globe v2: A SAM Based Global CGE Model using GTAP Data.

- The agents share both Armington nests (see page 42), i.e. the Armington aggregation module is switched on
- The regional household is switched off by using a dummy implementation of myGTAP with one household. No remittances etc. are considered (see page 52).
- The government is closed by savings which implies that real consumption is fixed (see page 58). The distribution of government demand to commodities is based on Leontief coefficients.
- Household demand uses a fixed saving rate and adjusts its total spent on consumption to exhaust household income.
- Foreign savings are fixed
- The capital account balance for each country is closed based on flexible exchange rates
- A LES demand system is used
- The VA nest comprises a sub-nest for different labor qualities
- VA and the intermediate composite can be substituted
- There is a CET matching the Armington

The following specifics of GLOBE can currently not be captured by CGEBOX:
The GLOBE region which differentiates bi-lateral margins trades and thus allows to define bi-lateral trade balances

- The rather flexible tax rate adjustment closures
- The Armington prices are gross of taxes, i.e. consumption taxes are equalized across agents (see page 53 for the definition in GLOBE).

The reader should note that alternative closures are possible, but then, the pre-configuration cannot be used and the different options must be set manually.

5.10.4 MIRAGE

The MIRAGE configuration is defined as follows:

- The GTAP-AGR module is switched on
- There is sub-nest under the VA nest substituting between labor and capital
- All industry sectors are depicted a la Krugmann
- The agents share the Armington specification in the Krugmann model (which endogenous preference shifters depicting love for varieties)
- A LES demand system is used
- There is separate government account closed by government savings
- A specific parameter set is used

5.10.5 ENVISAGE

- The GTAP-AGR and GTAP-E modules are switched on
- A LES demand system is used
- Capital vintages are differentiated in comparative static mode, considering 5 years of depreciation
- A separate government account is closed under fixed savings adjusting direct taxes
- A specific parameter files is used which e.g. introduced a CET on the supply side

5.10.6 CGEBOX

- The GTAP-AGR, GTAP-AEZ and GTAP-E modules are switched on
- Capital vintages are differentiated in comparative static mode, considering 5 years of depreciation

5.10.7 CGEBOX+

As above, but additional, the Melitz module is used for industry sectors

For further details on these pre-defined configurations, consult directly the GAMS code

5.11 Algorithm

The algorithm panel is available in two layouts. The default one is for normal user levels:
The model can be solved either as a constrained system of equations (CNS, formally solved with a dummy objective to yield a NLP which might help CONOPT) or as a MCP. The latter option is interesting if tax rates are to be endogenized e.g. under emissions ceilings, trade or production quotas, features not comprised in the standard model.

Please note that the default maximal time for model solution of 600 seconds might be too low for very large models.

The settings shown above are recommended defaults.

Generally, solving the model as a constrained system of equations CNS - especially in connection with pres-solves, see below – has proven to be generally faster for larger models (> 250,000 transactions in SAM). The CNS solution will automatically check if the model is square. MCP gives additionally flexibility such as introducing Tariff Rate or production quotas. Equally, the MCP version will automatically check for unpaired equations and variables. It is possible to first try to solve the model as CNS, and if that fails, switch to MCP.

The standard option file is 1, which uses a lower number of minor iteration, shown to speed up solution with larger models. The option file 2 with relaxed convergence tolerance is automatically chosen if the model cannot be solved in a first attempt. Option file 3 relaxes the convergence tolerance further, and is not intended for production runs, but for debugging purpose. Both with MCP and CNS, the above mentioned combinations of solver settings have proven to work best. The user can also choose which solver to use for NLP and CNS. CONOPT4 which parallelizes e.g. matrix factorization has shown considerable speedups for very large models and is now the recommended NLP solver. For older GAMS version, CONOPT4 was not available or only as a beta version, the user can turn back to CONOPT3: IPOPT comes for free with a GAMS license and will generally not be able to solve larger models.

If the model is solved as a NLP, it will on demand first solved as a CNS. CONOPT uses a somewhat simpler and faster algorithm with CNS which might however sometimes fail. It is generally recommended to try “Use CNS first”.

In order to solve larger models as a MCP, a PATH license is required. Users with a CONOPT license, but no PATH license, can try to solve smaller model as a MCP by using the GAMS provided solver...
NLPEC (no additional license required). The following settings should be entered in the file “GAMS option” under the “GAMS” tab in the “Settings” dialogue to make NLPEC the solver used for MCP:

![GAMS Option Settings](image)

The steering panel is available in a second version for developers:

![Steering Panel](image)

Unexperienced users are generally discouraged to switch to developer level and change the settings e.g. under “Options” relating to variable substitutions and scaling.

Presolves

For large models, pre-solves can be used during which single region CGEs for each region in the model are solved independently. That process is repeated several times to inform the individual country CGEs about changes in others regions. The single region models are only introduced as an intermediate steps towards the solution of the full model. They thus differ from regular single country CGEs which are usually solved either at fixed international prices or by rendering import and export prices depending on import and export quantities, not considering different trading partners. The pre-solves in here aim at providing a good starting point for a solve of the full global model. Therefore, their structure needs to reflect the bi-lateral trade relations and other linkages between regions in the GTAP model. The layout of the single country models therefore differs somewhat from the usual single country CE structure and solely uses equations and variables already comprised in the model at unchanged parameterization.

In the standard GTAP model, there is no CET on the supply side. We therefore simply assume that a change in demand for bilateral exports of a single country has a negligible impact on the supply price of each importer. Accordingly, we drive the single country models with fixed fob prices on the import side. On the export side, however, we exploit the Armington structure: we feed changes in the country’s supply prices in the Armington share equations of the importers at fixed total import and prices. The reader should note that solving the model also with fixed prices for exports would not help much in providing a good starting point for the model. Without a CET, the export price is by definition equal to the supply price in the domestic market. If one would hence fix the export prices, the
domestic prices in the current solve would also be fixed. There would hence be no updated price information be passed along from solving one single country model to the next.

Further links in the full models between regions are based on the global factor price index which is fixed during a global model solve to reflect that there is no money solution, i.e. the behavioral equations are of degree zero in prices. However, during single model solves, fob prices are fixed such that it is impossible to fix at the same time the factor price index. In order to still drive the single models during iterations towards a global factor price index of unity, the fob prices are divided before each solve by the currently calculated global factor price index as are the saving price índex and the factor prices of all regions which enter fixed the single model solves.

Finally, we reflect the global bank mechanism by calculating iterations the average expected return at global level, based on weighting with regional net investments. A heuristic estimate a change in foreign savings which should drive the country’s expected rate towards the global average.

There are a number of options available for the pre-solves:

1. *The number of pre-solves.* For larger shocks and a higher number of regions, ten iterations are recommended as the pre-solves are relatively cheap.

2. *Use of grid solves.* That solves the single country models in parallel with the exemption of the last pre-solve, but exploits less information as results from other countries can only be exploited once all single countries are solved. The grid solve is the recommended option for modern multi-core machines (default is one, can only be changed in developer mode).

CNS models based with CONOPT have proven to benefit much more from the pre-solves than the MCP version. Test have shown that the combination of presolves and CONOPT4 allow to solve 57x82 models without any filtering in about 10 minutes even under larger shocks.

5.12 GAMS

As all symbols (variables, equations) are also stored in a GDX container with GUI output switched on, one might normally switch “solprint” to “Silent” to keep the listing at minimal size. For complex simulation, “OnAfterInfes” offers the possibility to generate a listing if the model could not be solved without infeasibilities in the first try.
5.13 Pre-solves

The pre-solves are introduced to speed up solution of very large models. During each pre-solve iteration, each region in the model is solved separately as a single country model where only some variables in the second Armington nest of their export destination or the second level CET nests of their import origins react. The basic process is depicted in graphic below. In each iteration, variables in each regional model which depend on other regions endogenous variables such as driven by f.o.b. prices are updated. Next, variables not related to the current region are fixed and the model is sent to the grid for solution. While that solve start in the background, the next regional model is prepared and sent to grid. The code than waits until all model solutions are returned and collects their solution to start the next iteration.

To solve the model for one region, only, all model equations therefore carry a dynamic set rs, indicating the regions in current solve. The presolve code can be found in “gams\solve\presolve.gms”. The number of pre-solves is defined via the interface and drives a loop:

```
loop( presolve,
```

In that loop, several steps are performed:

1. A heuristic determines the foreign savings for that region, later fixed during the solve, using an interpolation over previous solves:
2. A loop over the regions is performed and dynamic sets are updated which indicate the nations in the current solve \(rsNat \) and sub-regions therein \(rs \), including the nation itself. The set \(rrComb \) comprises all bi-lateral combinations where the region is either an importer or an exporter.

\[
\text{loop}(\text{rr} \in rsNat(\text{rr}),
\]

--- include only current region in model

\[
\begin{align*}
\text{option kill} &= \text{rs}; \\
\text{option kill} &= rsNat; \\
\text{rs(rr)} &= \text{YES}; \\
\text{rsNat} &= \text{YES}; \\
\text{rs(subr)} \&\text{r}_r(subr, \text{rr}) &= \text{YES}; \\
\end{align*}
\]

--- bilateral combinations of trade flows to be included:

all import and export flows of current regions

\[
\begin{align*}
\text{option kill} &= rrComb; \\
\text{rrComb} &= \text{rsNat} \land \text{rsNat1} \land (\text{rsNat} \lor \text{rsNat1}) = \text{YES}; \\
\end{align*}
\]

3. The variables for the current region are initialized from the given results so far in “\text{solve}iniVars.gms” and negative variables reset in “\text{solve}resetNegative.gms”. That step is only included in the loop itself if the models are solved sequentially. If the models are solved in parallel on a grid, that step is performed outside of the loop over the regions at the beginning of each iteration.

4. Next, the trade related variables for all regions are fixed and next, bounds introduced for the region in the current solve, e.g.

\[
\begin{align*}
\text{xmt.fx} &= \text{xmt1}; \\
\text{xmt.lo} &= \text{xmtFlag} = 0; \\
\text{xmt.up} &= \text{xmtFlag} = +\text{inf}; \\
\end{align*}
\]

5. The model for that region is solved:

\[
\begin{align*}
\$\text{iftheni}_\text{mt} &\text{ "firstModeltype"="MCP"} \\
\text{--- MCP solution} \\
\text{solve gtap using mcp;}
\end{align*}
\]

\[
\begin{align*}
\text{--- presolve in CNS mode, switch to NLP for current region if infeasible in last presolve}
\text{(NLP might come up with something useful)}
\text{if (useCnsFirst} \land \text{p.roIter} \text{rr,} \text{numinfes,} \text{presolve-1) eq 0),}
\text{solve gtap using cns;}
\text{else}
\text{solve gtap using nlp minimizing dummy;}
\end{align*}
\]

\[
\$\text{endif}_\text{mt}
\]
Pre-solves

The advantages of the pre-solve of solving the full model directly on the shock depend on the size of the model and its complexity, the nature of the shock, as well as the hardware and solver used. For small to medium sized models under smaller shocks, using the pre-solves will typically drive up the overall computing time, especially if using CONOPT4 which itself parallelizes part of the solution process and is generally faster compared to the CONOPTD. There are also cases where the presolves might render it harder to solve the full model and can provoke infeasibilities. It is generally worth a try to use the pre-solves if the solution time of the full model exceeds 30 seconds and a multi-processor computer is used.

The rrComb set will ensure that only the bi-lateral flows in which the current region is involved are introduced in the model, e.g.:

```
xw(rNat1,i,rNat,t)/xw.scale(rNat1,i,rNat,t) =e= amw(rNat1,i,rNat,t)*xmt(rNat1,i,rNat,t)/xw.scale(rNat1,i,rNat,t)
```

In the above equation in case of the current region acting as the exporter rNat1, the total price of imports pmt and total imports xmt of the trade partner are fixed, but changes in the current regions f.o.b. price will change the c.i.f. price – along e.g. with shocks to the importers tariffs – and change the simulated export flows xw. Thus, at least as long as the exporter’s share in the total imports of rNat is not very large, the major impact of the Armington structure is captured. Furthermore, as pmt and xmt will be updated after each pre-solve, the individually regional model solves will iteratively approximate the solution of the global model.

Similarly, if a CET on the export side is present, for the case where rnat1 acts as an importer, the impact of changing import demand on the f.o.b. price faced is approximated:

```
xw(rNat1,i,rNat1,t)/xw.scale(rNat1,i,rNat1,t) =e= amw(rNat1,i,rNat1,t)*xmt(rNat1,i,rNat1,t)/xw.scale(rNat1,i,rNat1,t)
```

The foreign savings are fixed during the pre-solves such at the related equation is not introduced:
The same holds for the capital account equation which in the full model determines the foreign savings for the residual region, see the first dollar condition which requires that at least two regions with unfixed foreign savings need to be present in the model:

```
* capAcccseg(ts(t)) $ { \{ sum(rsNat $ {savf.range:rsNat,t ne 0},1) gt 1 
```

The parameter `p_solveReport` reports various statistics such as the time needed or potential infeasibilities:

```
p_solveReport(tslm,"Presolves, maxNumInfeas") = eMax( (presolves,rsNat), p_rcoreIter(mat, "sumInfeas",presolves));
p_solveReport(tslm,"Presolves, infeas, step") = eMax( (presolves,rsNat) $ p_rcoreIter(mat, "sumInfeas",presolves).preSolves);
p_solveReport(tslm,"Presolves, maxNumInfeas") = eMax( (presolves,rsNat), p_rcoreIter(mat, "sumInfeas",presolves).preSolves.pcos);
p_solveReport(tslm,"Presolves, seconds") = timeElapsed - p_solveReport(tslm,"Presolves, seconds");
```

That allows also tracking the solution behaviour in recursive-dynamic solves:

It is stored after each year in the scratch directory. The GDX viewer from the GAMSIDE allows keeping a file open for read while other processes update the file in the background. The user can hence open that file in the viewer and check there the solution behaviour while the simulation continues:

```
<table>
<thead>
<tr>
<th>Entry</th>
<th>Symbol</th>
<th>Type</th>
<th>Dim</th>
<th>Nr Elem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p_solveReport</td>
<td>Par</td>
<td>2</td>
<td>25</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th></th>
<th>t00</th>
<th>t01</th>
<th>t02</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeElapsed</td>
<td>21.959000</td>
<td>151.863000</td>
<td>185.751000</td>
</tr>
<tr>
<td>prep.seconds</td>
<td>0.163000</td>
<td>98.649000</td>
<td>1.188000</td>
</tr>
<tr>
<td>Presolves, seconds</td>
<td>8.610000</td>
<td>12.319000</td>
<td>12.644000</td>
</tr>
<tr>
<td>full Solve, seconds</td>
<td>133090.0000</td>
<td>134275.0000</td>
<td>134275.0000</td>
</tr>
<tr>
<td>Full solve, sumVar</td>
<td>1.000000</td>
<td>16.000000</td>
<td>16.000000</td>
</tr>
<tr>
<td>Full solve, modelStat</td>
<td>11.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>Full solve, nTries</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>Full solve, resUsd</td>
<td>0.359000</td>
<td>4.843000</td>
<td>5.125000</td>
</tr>
<tr>
<td>seconds</td>
<td>21.219000</td>
<td>128.586000</td>
<td>32.165000</td>
</tr>
</tbody>
</table>
6. Post-model processing

6.1 Decomposing welfare changes in CGEBox

- Wolfgang Britz, December 2018 -

6.1.1 Background

When analyzing impacts of policy changes or other shocks, the simultaneous adjustments in various elements impacting welfare such as in factor and commodity prices or in tax income or foreign savings render it challenging to understand what drives the simulated welfare change. CGEBox offers two approaches to decompose welfare changes which stem from different “schools”. In the world of partial equilibrium modelers, income is fixed, but products are often close substitutes such that cross-price effects in demand matter. Therefore, that community often decomposes the welfare change with regard to individual product price changes. The first approach detailed next draws on that concept and adds also the perspective of changes in individual factor prices and quantities.

The general equilibrium community has another focus and typically decomposes welfare with regard to terms-of-trade effects and allocative effects from removing tax distortions. That approach is, for instance, implemented in the GEMPACK version of the GTAP Standard model and provided in CGEBox as well. Both approaches have some overlap, but clearly complement each other and are useful to understand where welfare changes result from.

6.1.2 Decomposition with regard to overall price indices and income components

With regard to overall price indices, we measure the impact from updating the price indices from the benchmark to the simulation points, e.g. for savings:

\[
\text{Next, we use an EV calculation to express that utility changes in terms of required utility to reach the new income level at base year prices (in file postModel/calcExp.gms).}
\]

The argument %4 is the code for the change measured, for the saving price index it is “ps”:

```
```

Similar statements are found for the private household and government price indices.

To measure impacts of changes in factor income, depreciation and indirect taxes, we only update these components from benchmark to shock, e.g. for factor income excluding changes in depreciation:

252
For depreciation:

```plaintext
* --- update only depreciation
* u.l(rsNat,%2) = u.l(rsNat,"%t0%") + (facty.l(rsNat,"%t0%")
- fdepr(rsNat,%2)*pi(rsNat,%2)*kstock(rsNat,%2)
+ fdepr(rsNat,"%t0%")*pi(rsNat,"%t0%")*kstock(rsNat,"%t0%")
+ yTaxInd.l(rsNat,"%t0%")/regy.l(rsNat,"%t0%");
```

And for indirect taxes:

```plaintext
$batinclude 'postModel/calcExp.gms' '%2' '%2' '*mm*' '*vs*

* --- update only indirect taxes
* u.l(rsNat,%2) = u.l(rsNat,"%t0%") + (facty.l(rsNat,"%t0%") + yTaxInd.l(rsNat,%2))/regy.l(rsNat,"%t0%");
$batinclude 'postModel/calcExp.gms' '%2' '%2' '*mm*' '*vs*
```

These three components above are also found in the EV decomposition by Huff and Hertel 2000.

The total impact of regional income changes is defined as:

```plaintext
u.l(rsNat,%2) = u.l(rsNat,"%t0%") + regy.l(rsNat,%2)/regy.l(rsNat,"%t0%");
```

For the individual factors, we loop over the factors and update their price and quantities from benchmark and shock

```plaintext
loop(f0,
  * --- update quantities and prices for current factor f0
  * pft.l(rsNat,f0,%2) = pft.scale(rsNat,f0,%2);
xft.l(rsNat,f0,%2) = xft.scale(rsNat,f0,%2);
pf.l(rsNat,f0,a,%2) $ xfFlag(rsNat,f0,a) = pf.scale(rsNat,f0,a,%2);
xf.l(rsNat,f0,a,%2) $ xfFlag(rsNat,f0,a) = xf.scale(rsNat,f0,a,%2);
```

From there, we recalculate the factor income:

```plaintext
factY.l(rsNat,%2) = [ sum(fm $ xfFlag(rsNat,fm), pft.(rsNat,fm,%2)*xft.(rsNat,fm,%2))
+ sum((fpm,a) $ xfFlag(rsNat,fpm,a), pf.(rsNat,fpm,a,%2)*xf.(rsNat,fpm,a,%2))
- fdepr(rsNat,"%t0%")*pi(rsNat,"%t0%")*kstock(rsNat,"%t0%") ];
```

And calculate as discussed for other income contributions, the change in utility and the related EV:

```plaintext
--- update u and calculate money metric (homothetic preferences ...)
```

```plaintext
u.l(rsNat,%2) = u.l(rsNat,"%t0%") + (facty.l(rsNat,%2) + yTaxInd.l(rsNat,"%t0%")/regy.l(rsNat,"%t0%");
```

253
Afterwards, we reset the prices and quantities

\[
\begin{align*}
\text{pf.l}(\text{ramNat}, f0, \%2) &= \text{pf.l}(\text{ramNat}, f0, "\%0\%") ; \\
\text{xtf.l}(\text{ramNat}, f0, \%2) &= \text{xtf.l}(\text{ramNat}, f0, "\%0\%") ; \\
\text{pf.l}(\text{ramNat}, f0, a, \%2) &= \text{xfFlag}(\text{ramNat}, f0, a) = \text{pf.l}(\text{ramNat}, f0, a, "\%0\%") ; \\
\text{xf.l}(\text{ramNat}, f0, a, \%2) &= \text{xfFlag}(\text{ramNat}, f0, a) = \text{xf.l}(\text{ramNat}, f0, a, "\%0\%") ;
\end{align*}
\]

6.1.3 Decomposition with a focus on prices in changes

In here, we calculate the approximate impact from individual price changes for commodities and factors. To do so for the product prices, the following steps are performed:

1. We update each Armington price sequentially from benchmark to simulation level.
2. Next, we update the price indices (respectively utility in case of the LES demand system) for the private household, government and investments which enter the top-level utility function of the regional household.
3. Based on these updated price indices, we recalculate the change in utility of the regional household.
4. And calculate the EV equivalent to the simulated change in utility from updating only that single price.

6.1.4 Demand nests

The CES demand nest prices needs to be updated first to capture their impact on the different demand systems. That requires a recursion, starting with the lowest to the highest level to capture the case of nests nested in other nests:

The calculation in the loop requires different dual price aggregator for the CD case where the substitution elasticity is unity – first block – or not, as captured in the second block. Once the demand nest prices are updated, the price indices respectively utility for the three elements of the regional household – private, government and investment consumption can be calculated.

6.1.5 Private household

For the private household, the approach is different for the LES and the CDE demand.

1. LES

The LES demand has an indirect utility function which can be calculated from income and prices as shown below.
The calculation faces the challenge that the even the relative impact of the price depends on the income level of the private household due to non-homothetic demands. If one uses as shown above in the first block the simulate income at the benchmark (%2 index) and updates all prices, the utility of the private household after all price change and all adjustments in income flows would be simulated, i.e. the full utility change and not only the one attributed to price changes. We therefore correct for the total change in utility from benchmark to the simulation outcome with the last term, even if that is somewhat ad-hoc.

The last statement calculates the changes in the price index for the private household necessary to reach that utility.

2. CDE

The expenditure function for the CDE case is only implicitly defined. We therefore refrain from fully consistent approach. Instead, we update the Z parameters based on the price change:

```plaintext
zCons(rnat,i,"hhsld",%2) = zCons(rnat,i,"hhsld",%0) + pa.l(rnat,i,"hhsld",%0)*bh(rnat,i,%2) / pa.l(rnat,i,"hhsld",%0)*bh(rnat,i,%2);
```

These parameters must add up to unity, see the following equation comprised in the GAMS code of the CDE demand system:

```plaintext
uheq(rsr,t,ts(t)) $ sum(1,xaflag(r,i,h)) ..

1 == sum(1 $ (xaflag(r,i,h) $(not sum(dnest,i_fd(dnest,i,h),1))) , zcons(r,i,h,t)/bh(r,i,t));
```

We therefore calculate and apply a scaling factor:

```plaintext
zCons(r,"hhsld",%2) = sum(1 $ (xaflag(r,i,"hhsld") $(not sum(dnest,i_fd(dnest,i,"hhsld"),1))) , zcons(r,i,"hhsld",%2)/bh(r,i,%2));
```

From there, the budget shares are defined:
Which allows the calculation of the changes in the price index:

\[
p_{\text{welfTemp}}(\text{rsNat},i,"pcons","\%2") \cdot \text{axg}(\text{rsNat},\%2)
\]

\[
= \text{sum(} \text{gov.produced(} i \text{)} \cdot \text{not sum dvest i fd dvest i gov,1,1} \text{)} \cdot \text{alpha}_\text{prod}(\text{rsNat},i,\%2), \text{prod}(\text{dvest i fd,top,dvest go}) \cdot \text{alpha}_\text{D}(\text{rsNat},dvest,\%2), \text{prod}(\text{dvest j fd,top,dvest go}) \cdot \text{alpha}_\text{D}(\text{rsNat},dvest,\%2), \text{axg}(\text{rsNat},\%2)) \cdot \text{sigmag}(\text{rsNat}) \cdot \text{eq i} \]

The same holds for investments:

\[
p_{\text{welfTemp}}(\text{rsNat},i,\%2) \cdot \text{axg}(\text{rsNat},\%2)
\]

\[
= \text{sum(} \text{inv.produced(} i \text{)} \cdot \text{not sum dvest i fd dvest i inv,1,1} \cdot \text{alpha}_\text{prod}(\text{rsNat},i,\%2), \text{prod}(\text{dvest i fd,top,dvest inv}) \cdot \text{alpha}_\text{D}(\text{rsNat},dvest,\%2), \text{prod}(\text{dvest j fd,top,dvest inv}) \cdot \text{alpha}_\text{D}(\text{rsNat},dvest,\%2), \text{axg}(\text{rsNat},\%2)) \cdot \text{sigmag}(\text{rsNat}) \cdot \text{eq i} \]

\[
\]

6.1.6 Government and investments

For the government, the consistent price CD or CES index is used:

\[
\]

The same holds for investments:

\[
\]

\[
\]

6.1.7 Utility change for the regional household and EV

Next, we update the utility of the regional household under its CD-utility function. Note that we are not updating the shares to reflect that the elasticity of private expenditure to an utility change might be affected by the price change – which reflects the simplified treatment of private demand:

\[
\]

From there, the equivalent variation is defined:
As we sequentially updating over the product, the last product will measure the total EV of all price changes against the benchmark utility. We hence only consider differences between the sequential steps to the attribution to individual products:

\[
p_{\text{results}}(\text{rsNat},"V",j,"mm","tot",1,"%version%") = p_{\text{results}}(\text{rsNat},"V",j,"mm","tot",1,"%version%") - p_{\text{results}}(\text{rsNat},"V",j-1,"mm","tot",1,"%version%")
\]

In order to capture differences between the in parts ad-hoc treatment and prices, the difference to the total is calculated:

\[
p_{\text{results}}(\text{rsNat},"V","diff","mm","tot",1,"%version%") = p_{\text{results}}(\text{rsNat},"V","ra","mm","tot",1,"%version%") - \sum(j, p_{\text{results}}(\text{rsNat},"V",j,"mm","tot",1,"%version%")) - \sum(f0, p_{\text{results}}(\text{rsNat},"V",f0,"mm","tot",1,"%version%")) - p_{\text{results}}(\text{rsNat},"V","dep","mm","tot",1,"%version%") - p_{\text{results}}(\text{rsNat},"V","xt","mm","tot",1,"%version%")
\]

The results can be found in the following tables in the interface:

Note that due to the interaction between income and price changes, the total EV is not equal to the sum of the individual contributing elements. The results can be found in the following tables in the interface:

The first table reports the contribution of the overall changes in the prices indices, in factor income and indirect tax revenues:
Decomposing welfare changes in CGEBox

Note that the table was pivoted to show a comparison across countries. The global factor income change impact is by definition zero in the GTAP standard model as (1) factor stocks are fixed, (2) the global factor price index is used as the numeraire.

The decomposition discussed above is found in the “by product and factor” table, where “Sum” captures the total as shown above. It repeats the impacts of changes in nonimal income (factor income, :

\[\text{Income total} \]

\[\text{Factor income} \]

\[\text{Depreciation} \]

\[\text{Indirect tax income} \]

\[\text{Sum} \]

\[\text{Interaction effects} \]

\[\text{All commodities} \]

\[\text{Grains and Crops} \]

\[\text{Livestock and Meat Products} \]

\[\text{Mining and Extraction} \]

\[\text{Processed Food} \]

\[\text{Textiles and Clothing} \]

\[\text{Light Manufacturing} \]

\[\text{Heavy Manufacturing} \]

\[\text{Utilities and Construction} \]

\[\text{Transport and Communication} \]

\[\text{Other Services} \]

\[\text{Total factor demand} \]

\[\text{Land} \]

\[\text{Capital} \]

\[\text{UnskLab} \]

\[\text{SkLab} \]

\[\text{NatRes} \]

\[\text{6.1.8 Decomposition following Huff and Hertel, 2000} \]

The decomposition departs from the definition of regional income and allocates shares in total EV changes to changes in income contributions from changes in factor endowments at factor prices at the base year, from changes in quantities on which taxes are levied, from the trade balance etc.. The main differences to the approach above is that here the change in EV is attributed in shares to components of income.

For endowment changes, we use the absolute changes in endowment \(xft \) times factor prices \(pft \) at the benchmark:
p_deltaEV(rNat,"xft",%arg2%) = sum(f,pft(rNat,f,"%t0%") * (xft(rNat,f,%arg2%) - xft(rNat,f,"%t0%"));

Similar, for depreciation in case of changes in the capital stock:

p_deltaEV(rNat," depr",%arg2%) = - fdepr (rNat,"%t0%")*pi(rNat,"%t0")(kstock(rNat,%arg2%) - kstock(rNat,"%t0%");

For the taxes, the GAMS code copies the equation defining the different tax revenues into assignments, where the quantity is replaced by the quantity change, e.g.:

\[
\text{Tax revenues from production tax, equation (13) in VDM 2018} \\
\text{[sum(a $ prtx,1)(rNat,a,"%t0%"), prtx(rNat,a,"%t0")*(m_px(rNat,a,"%t0")-m_xp(rNat,a,"%t0%")-m_xy(rNat,a,"%t0%")-m_yx(rNat,a,"%t0%")})
\]

For the terms of trade effects, changes in f.o.b. and c.i.f. prices at benchmark trade flows are taken into:

\[
p_{\text{deltaT}}(rNat,"t.o.t",%arg2%) = \text{sum}(1,rNat, (\text{wefobs}(rNat,1,rNat,%arg2%) - \text{wefobs}(rNat,1,rNat,"%t0%") \times (m_yx(rNat,1,rNat,"%t0%")-m_yx(rNat,1,rNat,"%t0%")})
\]

Plus the impact of changes in the trade margins for exports:

\[
+ \text{sum}(m,i,rNat1) \text{ $ amgm(m,rNat,i,rNat1}$,
\]

\[
\text{amgm(m,rNat,i,rNat1) $ (m_xws(rNat,i,rNat1,"t0") - rrCom(rNat,rNat1) $ (not rrComp(rNat,rNat1))$ & $m_xws!(rNat,i,rNat1,"t0") - (rrCom(rNat,rNat1))$ & $m_xws!(rNat,i,rNat1,"t0") - (not rrComp(rNat,rNat1)))
\]

\[
* \text{tmarg(rNat,i,rNat1,"t0")/m_lambdamg(m,rNat,i,rNat1,"t0")}
--- margin prices in region r ?
* (ptmg(m,%arg2%)-ptmg(m,"t0%")

\]

And imports:

\[
--- \text{value of transport margins for imports of rNat times changes in margins price}
- \text{sum}(m,i,rNat1) \text{ $ amgm(m,rNat,i,rNat}$,
\]

\[
\text{amgm(m,rNat,i,rNat) $ (m_xws(rNat,i,rNat,"t0") - rrCom(rNat1,rNat) $ (not rrCom(rNat1,rNat))$ & $m_xws!(rNat,i,rNat,"t0") - (rrCom(rNat1,rNat))$ & $m_xws!(rNat,i,rNat,"t0") - (not rrCom(rNat1,rNat)))
\]

\[
* \text{tmarg(rNat1,i,rNat,"t0")/m_lambdamg(m,rNat,i,rNat,"t0")}
* (ptmg(m,%arg2%)-ptmg(m,"t0%")
\]

\];

The final changes stems from updating prices of investments:

\[
p_{\text{deltaEV}}(rNat,"fsav",%arg2%) = \text{netinv(rnat,"t0")(pi(rNat,%arg2%) - pi(rNat,"t0")))
\]

\[
- yI(rNat,"t0") \times (psave(rNat,%arg2%) - psave(rNat,"t0");
\]

We assign the total EV in shares to these individual effects:
Decomposing welfare changes in CGEBox

And aggregate also to regional aggregates:

\[
\]

The results can be inspected in the inspected on a per capita basis:

Or as totals:
6.2 Trade in VA indicators

6.2.1 Background

Trade has a double role by firstly allowing consumers to not only demand domestic produce, but also imports and secondly offering income opportunities by exports. The first role can be easily assessed in a CGE framework by reporting import shares on demand. The second one is harder to assess as export revenues comprise both direct value added from the exporting sector and indirect value added comprised in domestic intermediates. In the following, we present the implementation of a well-established framework drawing on Leontief Multiplier analysis into the post-processing of CGEBox to assess the income generate role of exports.

We start with an illustrative example of an open economy with 2 two sectors and no foreign savings. Imports serve in our example only as intermediates inputs are not detailed by commodity:

<table>
<thead>
<tr>
<th></th>
<th>Agr</th>
<th>NonAgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agr share</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>NonAgr share</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Import share</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>VA share</td>
<td>0,3</td>
<td>0,35</td>
</tr>
<tr>
<td>Output</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>VA</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>Final demand incl. Exports</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>Exports</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Final domestic demand</td>
<td>21</td>
<td>16</td>
</tr>
</tbody>
</table>

The example is balanced as the export revenues of 14 =2+12 are equal to the value of imports (.2*30 + .1*80)=12. The question is about the contribution of the exports (or domestic sales) to value added. Based on usual Leontief approach, we first calculate \((I-A)\), where \(I\) is the identity matrix and \(A\) the matrix of domestic input coefficients:

\[
\begin{pmatrix}
0.9 & -0.05 \\
-0.4 & 0.5
\end{pmatrix}
\]

Inverting that matrix delivers the Leontief multiplies \((I-A)^{-1}\):

\[
\begin{pmatrix}
1.1627907 & 0.11627907 \\
0.93023256 & 2.09302326
\end{pmatrix}
\]
Multiplying the value added shares of the sectors with the Leontief multipliers delivers the VA multipliers for each commodity:

\[
0.6744186 \quad 0.76744186
\]

If we now multiply these with final demand and export, we derive the VA contribution of the demand contributions:

<table>
<thead>
<tr>
<th>Final domestic demand contribution</th>
<th>26,4418605</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export contribution</td>
<td>10,5581395</td>
</tr>
<tr>
<td>Total Value added</td>
<td>37</td>
</tr>
</tbody>
</table>

Which are equal to the value added as reported in our simple SAM and, as the SAM is balanced also equal to final domestic demand. The aim is now to implement the above steps into the CGEBOX framework.

6.2.2 Post-Model processing

As a first step, we define \((I-A)\) as follows, where the \(p_{\text{results}}\) parameter was populated before from the model results. Note that we are using the “\(V\)” field which captures value (= quantity x price):

```plaintext
--- invert (I-A)
execute unload %scordir%\p_in.gdx',i,p_in;
execute '-invert.exe %scordir%\p_in.gdx i p_in %scordir%\p_inv.gdx p_I contrib';
execute load %scordir%\p_inv.gdx',p_I contrib;
```

Next, we use the “INVERT” utility from GAMS to define \((I-A)^{-1}\):

```plaintext
--- invert (I-A)
execute unload %scordir%\p_in.gdx',i,p_in;
execute '-invert.exe %scordir%\p_in.gdx i p_in %scordir%\p_IInv.gdx p_IInv';
execute load %scordir%\p_IInv.gdx',p_IInv;
```

From there, we calculate multipliers for each primary factor – commodity combination:

```plaintext
--- define multipliers for each commodity \(j\) and each primary factor \(f\)
p_results(rs,"V",j,f,"tradeInVa",%1,"version%")  
  = sum((a, l) | xflag(rs,a,l), p_results(rs,"V",a,"dom",%1,"version%")/p_results(rs,"V","out",a,"dom",%1,"version%") * p_IInv(i,j));
```

Which can be aggregated to yield value added multipliers

```plaintext
--- aggregate to VA multipliers
p_results(rs,"V",j,wa,"tradeInVa",%1,"version%") = sum(f, p_results(rs,"V",j,f,"tradeInVa",%1,"version%"));
```

Using these multipliers and export volumes allows to calculate the VA contribution of exports:
Further code lines not shown here aggregate the information over regions and commodities.

6.2.3 GUI

In order to generate the information, the “GUI” output option must be switched on as well as the “Trade in VA indicators” checkbox:

That combination produces a table under the theme “trade”:

Which reports both the multipliers and the contribution of trade to value added. Additionally, the share from export related value added on total income is reported:
As seen below, the table also provides detail by factor:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Per unit of output</th>
<th>In total trade</th>
<th>In trade, relative to GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.7508</td>
<td>6803.7546</td>
<td>0.1596</td>
</tr>
<tr>
<td>Total</td>
<td>0.7508</td>
<td>6803.7546</td>
<td>0.1596</td>
</tr>
<tr>
<td>Grains and Crops</td>
<td>0.9736</td>
<td>237.4520</td>
<td>0.0062</td>
</tr>
<tr>
<td>Livestock and Meat Products</td>
<td>0.6893</td>
<td>139.8059</td>
<td>0.0058</td>
</tr>
<tr>
<td>Mining and Extraction</td>
<td>0.8715</td>
<td>1156.4588</td>
<td>0.0038</td>
</tr>
<tr>
<td>Processed Food</td>
<td>0.7428</td>
<td>459.7734</td>
<td>0.0068</td>
</tr>
<tr>
<td>Textiles and Clothing</td>
<td>0.6726</td>
<td>450.4073</td>
<td>0.0068</td>
</tr>
<tr>
<td>Light Manufacturing</td>
<td>0.6488</td>
<td>1481.8257</td>
<td>0.0061</td>
</tr>
<tr>
<td>Heavy Manufacturing</td>
<td>0.6056</td>
<td>3742.0999</td>
<td>0.0071</td>
</tr>
<tr>
<td>Utilities and Construction</td>
<td>0.7395</td>
<td>1145.6394</td>
<td>0.0063</td>
</tr>
<tr>
<td>Transport and Communication</td>
<td>0.7990</td>
<td>747.8957</td>
<td>0.0199</td>
</tr>
<tr>
<td>Other Services</td>
<td>0.8508</td>
<td>1150.4960</td>
<td>0.0240</td>
</tr>
</tbody>
</table>
6.3 Altertax

6.3.1 Background

There are various settings where it makes sense to construct a new benchmark from the GTAP data base before shocking the model instead of comparing different shocks against each other where all comprise the same changes against the benchmark. One option to construct a new benchmark changes first entries in the global SAM and next re-balances it. That approach is especially suitable if benchmark changes are motivated by new or updated data. The filtering approach implemented in CGEBox can be seen as a specific variant of that approach.

The option discussed in here uses the simulation model itself. That approach is especially appropriate for changes where the behavioral responses embodied in the equation structure provide a better way to re-adjust the benchmark compared to the more mechanical re-balancing the approaches. Conceptually, that is straightforward as the accounting identities underlying a balanced SAM must also be fulfilled by a simulation with the CGE itself. The main challenge is to map the simulated results back in same format used on the input side of the simulation model. As CGEBox is a SAM based CGE approach, that step is not overly complex. That brief documentation will discuss the basic methodology and technical implementation of AlterTax in CGEBox.

6.3.2 Technical realization

The technical realization re-uses existing elements of CGEBox to implement alterTax:

1. A predefined configuration which can be chosen from the interface set-ups a simulation model useful for alterTax, i.e. the parameterization of the model is changed such that most substitution elasticities are unity (or close to unity).

The user can select any shock file:
6. As part of post-processing, the relevant entries for a start of the model define a new benchmark, including the global SAM.

Note: The alterTax output can be also generated from any normal model run, in case the pre-configuration given next is not suitable.

6.3.3 Pre-configuration

The pre-configuration changes the following elements compared to the standard GTAP Model:

- The demand system for private households is changed to a CD.
- The production nesting using substitution elasticities of unity between VA and the intermediate composite, between primary factors and between intermediate.
- The Armington elasticities are set close to unity (a CD implementation is currently not supported).
- All factors are mobile

The use of the CD functional form allows to keep the value shares constant during the alterTax simulations which thus maintains basic relations between transactions in the SAM. If highly detailed global SAMs are subject to AlterTax, the per-solve mechanism can be used as well.

6.3.4 Post-Model processing

The SAM output option is switched on and the results for the shock are stored again as a SAM in a new data file. The same holds for various sub-matrices, for instance:

```latex
\texttt{xda0(r,i,aa) \times xda0(r,i,aa) = xd.l(r,i,aa,"shock") \times pdp.l(r,i,aa,"shock") / gblscale};
```

The update symbols are stored to a new data file:
Note that the AEZ implementation does not yet work properly.

6.3.5 Use of the updated benchmark

The updated benchmark data set is stored in the data directory with the post-fix “alttax” appended and can be used as any other data set:

![Screenshot of the CGEBox software interface showing the use of the updated benchmark data set](image-url)

The screenshot illustrates how to select the updated benchmark data set from a dropdown menu, specifying the scenario and post-fix “alttax”.
6.4 Linking the physical MRIO for agricultural and food products FABIO to CGEBox

- Wolfgang Britz, Martin Bruckner, Salwa Haddad –

6.4.1 Introduction

FAOSTATs offers a wealth of data on global agriculture including bi-lateral trade, herd sizes and harvested area for UN Member countries and many agri-food products. These data were in a systematic way integrated in the Multi-Regional Input-Output (MRIO) data base FABIO (ref). We present in here two approaches to link CGEBOX (Britz 2017) as a global CGE to FABIO. The first one uses FABIO in a generic way to split up the global GTAP SAM used by CGEBox to more detail on agricultural and related processing activities where the desired additional detail is user defined. The second approach uses FABIO to disaggregate post-model the more aggregated results simulated with CGEBOX, in order to generate detailed results at country and product level for individual agricultural and selected derived products and derive from there nutritional indicators.

6.4.2 Overview on FABIO

FABIO is a MRIO in physical and partly monetary terms for agri-food products. In opposite to typical national IO-tables, an MRIO describes inter-industrial relations on a country-by-country basis, i.e. the intermediate input souring of each industry in each region is dis-aggregated by imported origin. It is hence not only possible, to give an example, to quantify how much soy bean is used in China’s soy bean crushing industry, but also from which countries the industry imports that intermediate input. That is different from the global GTAP SAMs underlying CGEBox which depict bi-lateral trade flows, but not differentiated by agent.

FABIO covers around 130 agricultural and related processing activities. Furthermore, it provides harvested areas and herd sizes in heads for the agricultural activities. The main data underlying FABIO are different statistical data sets from FAOSTAT. Building on FAOSTAT, it uses its concept of primary product equivalents to convert trade and consumption in derived products such as wheat flour and bread back to wheat. That is one major difference to a SAM used in a CGE. The second one is that FABIO is focusing on agri-food, i.e. it reports intermediate input between agri-food items, only.

The original FABIO data base is handled in R, using numerical linear indices to yield two dimensional matrices of bilateral final demand, intermediate demand etc. The version provided in GDX container comprises two four-dimensional GAMS parameters with the following structure and the necessary sets with the lest of items (= products), ISO codes for the regions and processes.

The first parameter comprises the global MRIO with additional information the parameter is called “p_fabio”:

1. First dimension: exporter (= supplier) region or “tot” for sum over all export regions. The regions are coded by 3-character ISO codes
2. Second dimension: the 130 FABIO items, i.e. products, in long text
3. Third dimensions: importer (= use region)
4. Fourth dimension: use categories (food, other, stock changes, balancing or the 121 FABIO processes, long texts

The total supply is stored under “prod” on the third dimension, the fourth dimension is then empty “"”. The same holds for the acreage, stored under “land” with the fourth dimension again shows an empty “"”. In order to ease processing, bi-lateral exports respectively domestic sales are stored in the position “exp”.

The following shows an example “Potatoes and products” for “DNK” = Denmark. As the supplier is equal to the demander region, the data refer to domestic sales. The first position, potatoes used in its production refer to seed potations. The largest use position is sweetener production, the rest goes to food (including not specified food processing activities such as producing French Fries). Small quantities are reported for food use.

At the end of the entries for the producer country are the two position swith total production and related land use:

The second container comprises the symmetric Leontief inverse.

6.4.3 Methodology

6.4.4 Introduction

A MRIO such as FABIO can be used without a CGE to answer stand-alone questions in the tradition of IO-analysis such as “what would be impact on production in the different countries and land use if final consumption of a specific product in a specific country would increase by x%”? That requires constructing the so-called Leontief-Inverse. However, there are major differences between such a multiplier analysis and running a shock in a CGE which motivate the links detailed below. Firstly, the Leontief-Multiplier analysis with a MRIO assumes that physical shares in bi-lateral input use are constant, i.e. if beef producers in country x in the observed period are assumed to use 100 kg soy cake from country y per ton of beef outputted, that relation cannot change in a simulation. CGE models use here the Armington mechanism or variants thereof which update bi-lateral trade shares based on relative price changes. The same holds also for land use, in case of beef production, applying the Leontief inverse implies that stocking rates in beef production can’t change; it thus also excludes that concentrate use and grazing act as (imperfect) substitutes. The consequence of keeping crop yields and stocking rates constant is that global land use expands proportionally to production. Here, CGEs
assume either that the economically used land stock is fixed or that land supply reacts to price changes, in both cases, the composition at least of value added (labour, capital, land, natural resources) can change in the production functions of the different sectors. That also implies that yields and stocking rates in a CGE analysis depend on price relations.

Thus, both an IO-multiplier analysis and a CGE use the given data to derive the relation between inputs and outputs at the benchmark and calibrate from there production functions. The IO-multiplier analysis keeps these relations fixed, i.e. it assumes a Leontief technology such that average and marginal technology are identical. That implies completely elastic supply of primary production factors. A CGE instead typically assumes that primary production factor stocks are fixed at the level of the total economy or even of individual sectors – the latter typically assumed in case for natural resources. Under that assumption, adjustments in the structural composition of the economy require some flexibility in the production function such that at least for part of the technology, marginal input-output relations are not constant.

A multiplier-analysis is not an economic model in the strict sense since there is no choice of the agents involved, such that also no behavioural assumptions are necessary: final demand is changed exogenously, and industry output adjusts according to fixed intra-industry relations in intermediate demand, updating primary factor use such that it matches the physical demand emanating from the updated industry composition. In opposite to that, a CGE makes assumptions about market power and product differentiation, behaviour of the final demanders and producers as well as factor suppliers, and solves the model under market clearing conditions in all good and factor markets as well as macro-economic accounting identities.

6.4.5 Split

Approach

The split approach combines to a large degree the advantages of using detailed physical data as provided by FABIO and the economic adjustment mechanisms captured by a CGE. Specifically, it reduces the aggregation bias stemming from aggregating agricultural and derived products to rather broad sectors.

The shortcomings of the split approach relate to the different content covered by FABIO as a physical IO for agriculture and food-processing and the global GTAP SAM. Firstly, FABIO does not offer input coefficients beyond agri-food, i.e. there are on data on intermediate input use of products such as diesel, fertilizers, plant protection products, insurance, contract work. Secondly, land use is the only reported primary factor. Thirdly, the GTAP SAM covers different tax (respectively subsidy) rates such as output, consumer, import and export taxes which might differ inside a GTAP sector, information also missing in FABIO such that the assumption of similar cost shares and equal tax rates is used as a default. For import taxes, i.e. tariffs, data bases such as MacMap offer the chance to introduce disaggregated information which might be of interest for trade policy related applications.
Technical integration

The split is performed based on the GAMS code of the generic split program comprised in CGEBox (Britz 2017). It requires as a minimum split shares for production and the different final demand categories, assuming equal cost shares, tax rates etc. if no further detailed data are provided. FABIO does not only provide these minimum data, but offers dis-aggregated data on bi-lateral trade and parts of intermediate input use which contribute additional split factors.

In order to split up the SAM of CGEBox based on FABIO, the user needs first to provide lists with the new products and activities and their relations. The names $s_{\text{spliti}}, s_{\text{splita}}$ and ia for these sets are fixed to allow for a proper integration in the overall data generation process of CGEBox:

Figure 1: Schematic overview on split approach
Linking the physical MRIO for agricultural and food products FABIO to CGEBox

Note that it will in most applications necessary to define a residual category when splitting up the GTAP SAM based on FABIO. For the example of oilseeds (primary agriculture) and vegetables cakes and oils (a food processing sector) shown above, FABIO offers a lot of detail of which only data on olives and soy are used in the example code. We hence need to assign the not explicitly assigned products and activities ones in a “rest-of” or “other” category to allow exhausting the data found in the SAM at aggregate level.

Furthermore, the link of the newly introduced products to the GTAP sectors needs to be provided:

```plaintext
set s_spliti / olv-c "Olives"
    soy-c "Soy beans"
    osr-c "Other oilseeds"
    olvo-c "Olive oil"
    volo-c "Other vegetable oils and cakes"
    /

* set s_splita / olv-a "Olives"
    soy-a "Soy beans"
    osr-a "Other oilseeds"
    olvo-a "Olive oil"
    volo-a "Other vegetables oils and cakes"
    /

set i_a(*,*) / olv-c,olv-a
    soy-c,soy-a
    osr-c,osr-a
    olvo-c,olv-a
    volo-c,volo-a
    /
```

The set definitions show above must be in the block following:

```plaintext
siftheni.decl "%1"="decl"
```

That position in the code ensures that the newly defined sectors are properly integrated in the list of SAM rows and columns.

The main additionally information which needs to be provided by the user to make use of the FABIO data base is the link between the newly introduced products and activities (\textit{spliti} and \textit{splita} from above) and the products and activities of FABIO data base, as shown for the example below:

```plaintext
set fabC_spliti(fabC,spliti) /
    "Olives (including preserved)" .olv-c
    "Soyabeans" .soy-c
    "Olive oil" .olvo-c
    /

set fabA_splitA(fabA,splitA) /
    "Olives production" .olv-a
    "Soyabeans production" .soy-a
    "Olive Oil extraction" .olvo-a
    /
```

The remainder of program is more or less standardized:
The last block which excludes certain IO-relations or assigns existing flows fully to others is optional. Here, as seen, the “other oilseeds processing” activity “volo-a” is not allowed to use olives “olv-c”, they must be fully processed by the “olv-c” activity. The same holds for soy beans and other oil seed: they cannot enter the olive processing activity and enter instead the residual one.

All follow operations are already coded in GAMS (see build\split_based_on_fabio.gms). That program firstly calculates average f.o.b. prices to link the physical quantities in FABIO to the SAM in monetary terms:

Next, it assigns amounts of private and government demand based on the mappings from above between the new products and the FABIO ones fabc_i. The assignment is conditional on such consumption being reported in the SAM, i.e. sum(is_i(splitiF_i),sam(iNat,i,den)). Furthermore, the demand categories “int” and “inv” are excluded. Last, the split product must have a link to FABIO which renders it possible to combine the split based on FABIO with splits based on other data sets. The summation considers the mapping fabr_r between the FABIO regions fabr and the regional aggregates rNat in the GTAP SAM from GTAPagg, that mapping is automatically set-up elsewhere in the GAMS code and does not need to be provided by the user. The same holds for the link between the FABIO products fabc and the product in the SAM splitiF which are linked to the FABIO data base:

Similar mappings are defined for investment and intermediate demand, production and bi-lateral trade flows. The split program (build\split.gms) will convert the absolute quantities assigned to split factors above in shares.
Note that firstly missing information in FABIO on tariff and export subsidy rates and output taxes will imply that the average ones from the SAM will be used. There is currently also no GAMS code which could handle more specific information in that case.

Secondly, FABIO does only comprise physical input relations between products covered by FAOSTAT and land use. All other cost shares are taken from the SAM, but these can be overwritten by the user, while sector specific input tax rates are currently not supported.

6.4.6 Post-model dis-aggregation

As an alternative to introduce additional detail in the SAM which makes the CGE model larger and thus potentially harder to solve, a post-model dis-aggregation can be used instead or additionally. It is based on proportionality assumptions.

Methodology

The basic methodology is very simple: we proportionally shock demand in FABIO based on more aggregated CGE results and apply the Leontief inverse from FABIO to inform on changes in supply, harvested acreage and herd sizes. We hence neglect the manifold differences underlying global CGE modelling and multiplier analysis in MRIO, not aiming at consistency. These differences should however be understood in order to properly interpret the findings, and we will comment briefly on some. The data base of the global CGE is defined in constant US dollars such that price and quantity changes are expressed against that benchmark. GTAP differentiates strictly between primary agricultural products and processed ones, whereas the FAO uses the concept of primary product equivalents. Thus, whereas wheat, wheat consumption and trade – final or intermediate – in GTAP refers to wheat only, FAO uses conversion factors to convert trade and consumption of derived products such as flour, break etc. back into wheat equivalents. Whereas in some cases, there is very limited consumption and trade in derived form reported in FAOSTAT, such as in the case of soy beans, substantial shares might be found in others. It is however important to note that dairy (split up in butter and the rest), vegetable oil and cakes and meats are separate products in FAOSTAT and FABIO, covering thus some important processed food categories. Besides production, also factor use in GTAP is reported in constant dollar. Thus, whereas FABIO reports land use in harvested hectares, GTAP reports economic returns to land.
Figure 2: Overview on post-model dis-aggregation

Besides differences in data definition, the fundamental differences between a Leontief multiplier analysis and a CGE simulation should be kept in mind. A Leontief multiplier analysis assumes that the physical input / output relations remain constant, such as physical yields per hectares as the relevant case for FABIO. For a MRIO, it also implies that bilateral trade shares are fixed. A CGE uses CES production function where input / output relations might react to price changes; the Armington assumption (potentially in a combination with a Constant Elasticity of Transformation function to distribute supply) will also update trade shares. Even more importantly, the Leontief multiplier analysis implies that factor demand will fully adjust to changes in supply, where the CGE analysis typically assumes fixed economic factor stocks or some price responsiveness.

Technical implementation

The main steps in the approach are detailed next, commenting directly on the GAMS code. Firstly, we need a mapping between the GTAP regions and sectors and those in FABIO. Both provide ISO country codes, such that we can directly use that information:

\[
\text{fabr}_r(\text{fabr}, r) \times \text{sum}(\text{rrmap}(\text{gisr}, \text{gtapr}) \times |\text{mapr}(\text{gtapr}, r) \times \text{fabr}_\text{ISO}(\text{fabr}, \text{gisr})), 1) = \text{YES};
\]

The cross-set \(\text{fabr}_r\) defines the mapping between the individual regions in FABIO \(\text{fabr}\) and the current regions used in CGEBox (see \text{fabio}_\text{fabio.gms}). It is derived from links between the ISO country codes stored in the set \(\text{gisr}\) to both the FABIO regions (\(\text{fabr}_\text{ISO}\)) and the countries and
regions in the full GTAP data base rrrmap. Finally, we use the information on how the GTAP data is aggregated to the regions in the model, stored in mapr.

The mapping between the items in FABIO fabc and the original GTAP sectors iDat is defined manually in the cross-set fabc_IDAT (see fabio/fabio.gms):

```
set fabc_IDAT(fabc,iDat) /
   *Rice (Milled Equivalent) *pdr
   *Wheat and products  *wht
   *Barley and products  *gro
   *Maize and products  *gro
   *Rye and products  *gro
```

Taken the sectoral aggregation into account, the mapping between the current sectors in the model i and the FABIO items is defined as:

```
fabc_i(fabc,i) $ sum{ (fabc_IDAT(fabc,iDat),mapi(iDat,i)),1) = YES;```

In order to define the food demand in the regional and item resolution in FABIO we need to update the FABIO data matrix p_y whose rows and columns are not labelled. We hence need a mapping from the regional and use label to the index position which is provided by the three dimensional set fabr_dem_j. Similarly, the three dimensional set fabr_fabc_i shows the linear index i belonging to a country and product combination.

In order to take into account that most of the food demand by final consumers is not at the stage of primary agricultural products, but at the stage of of processed products, we convert with a Leontief inverse derived from the GTAP IO-coefficients into primary product equivalents, not considering feed demand which is separately handled by FABIO. The set excludeIJ(i,j) captures these exemptions:

```
excludeIJ[i,j] $ sum{ (rnat,cropBasedA,feedUseA) $ (xFlag[rNat,cropBasedA,i] $ xFlag[rNat,feedUseA,j]),1) = YES;```

We define first the (1-A) matrix from the GTAP IO-coefficients, i.e. total use of GTAP commodity i in sector a producing output j divided by the output of sector a:

```
p_GTAPInv(i,j) $ (sum(a $ xFlag[rNat,a,j], p_results[rNat,"Q","out",a,"tot",%arg1","%version"]) $ (not excludeIJ[i,j]))
   - 1 $ sameas[i,j] - sum(a $ xFlag[rNat,a,j], p_results[rNat,"Q",i,a,"tot",%arg1","%version"]) /sum(a $ xFlag[rNat,a,j], p_results[rNat,"Q","out",a,"tot",%arg1","%version"]);```

Which we invert with an in-built GAMS utility:

```
--- invert
execute unload 'rdir\p_IA.gdx',i,p_GTAPInv;
execute 'invert.exe rdir\p_IA.gdx i p_GTAPInv rdir\p_IAInv.gdx p_GTAPInv';
execute load 'rdir\p_IAInv.gdx',p_GTAPInv;
--- store for further use
p_mult[rNat,i,j] = p_GTAPInv[i,j];```

First, we define the final demand for each GTAP product in the simulated point and at the benchmark on a vector which will be later converted into primary product equivalents:
Next, we define the list of GTAP products \textit{foodI} which comprises commodities with a link to agriculture and food sectors and thus are related to FABIO:

\begin{verbatim}
foodI(i) $ sum(fabc_i{fabc,i},i,1) = YES;
foodI(i) $ sum(mapi"cmc",i),1) = YES;
foodI(i) $ sum(mapi"vol",i),1) = YES;
foodI(i) $ sum(mapi"mil",i),1) = YES;
foodI(i) $ sum(mapi"pcc",i),1) = YES;
foodI(i) $ sum(mapi"grt",i),1) = YES;
foodI(i) $ sum(mapi"ofd",i),1) = YES;
foodI(i) $ sum(mapi"b t",i),1) = YES;
foodI(i) $ sum(mapi"trd",i),1) = YES;
\end{verbatim}

For these products, we calculate the implicit demand for primary agricultural products (= primary product equivalents) by multiplying total final demand with the Leontief inverse:

\begin{verbatim}
p_primEquDem(rNat,i,\%arg1\%) = sum(Foodi, p_primEquDem(rNat,foodI,\%arg1\%) * p_mult(rNat,i,foodI));
p_primEquDem(rNat,i,\%t0\%) = sum(Foodi, p_primEquDem(rNat,foodI,\%t0\%) * p_mult(rNat,i,foodI));
\end{verbatim}

We now need to map from the aggregate regions \textit{rNat} and product \textit{i} in constant USD in to the individual countries and products in FABIO in physical units:

\begin{verbatim}
p_results(fabr,"Q",fabc,"food","fablo",\%arg1\%,\%version\%)
 = sum((fabr_r(fabr,rNat),fabc_i(fabc,i)) $ p_primEquDem(rNat,i,\%t0\%),
 --- final demand change GTAP
 p_primEquDem(rNat,i,\%arg1\%/p_primEquDem(rNat,i,\%t0\%)
 --- original final demand in FABIO (across all importers)
 * p_fablo("tot",fabc,fabr,"food")
);
\end{verbatim}

In order to derive from there a shock in supply, we use FABIO Leontief inverse \textit{p_LInv}:

\begin{verbatim}
p_results(fabr,"Q",fabc,"Supp","fablo",\%arg1\%,\%version\%)
 = p_fablo(fabr,fabc,"prod",**)
 + sum((fabc1,fabr1) $ p_fabInv(fabr,fabc,fabr1,fabc1),
 (p_results(fabr,"Q",fabc1,"food","fablo",\%arg1\%,\%version\%)
 - p_fablo("",fabc1,fabr1,"food")) * p_fabInv(fabr,fabc,fabr1,fabc1));
\end{verbatim}

As FABIO comprises a matching vector of herd size and harvested areas for the processes, we can use the updated output quantities to assign changes in land use as well:

\begin{verbatim}
p_results(fabr,"Q",fabc,"Land","fablo",\%arg1\%,\%version\%)
 = p_fablo(fabr,fabc,"Land",**)
 * p_results(fabr,"Q",fabc,"Supp","fablo",\%arg1\%,\%version\%)/p_fablo(fabr,fabc,"prod",**);
\end{verbatim}

Finally, for reporting purposes, we also aggregate the results back to the regional aggregation used in CGEBox:

\begin{verbatim}
p_results(r,"Q",fabc,"Land","fablo",\%arg1\%,\%version\%)
 = sum(fabr_r(fabr,r), p_results(fabr,"Q",fabc,"Land","fablo",\%arg1\%,\%version\%));
\end{verbatim}
Linking the physical MRIO for agricultural and food products FABIO to CGEBox

Note that different extensions could be possible:

1. One could adjust the resulting changes in detailed output quantities to match simulated output quantity changes in GTAP.
2. The same could be possible for intermediate input and land use.
3. Instead of the corrections 1. and 2., the I/O coefficients in FABIO could be updated and the Leontief-inverse calculated from the updated MRIO.

6.4.7 Nutrition indicators

The detailed data on food demand also open the door to calculate food supply indicators for calories, protein and fat which are also provided by the FAO in their food balance sheets (FBS). That firstly requires defining nutrient content per product. The FAO seems to use country specific values, we instead calculate world average ones using the global FBS results. The data for 2011 have been downloaded in CSV format from the FAO web page and converted in a GAMS readable table, they are stored under “fbs_nut_cont.gms”, an example for the relevant data is shown below:

```
"Wheat and products      ",  "Food supply quantity (kg/capita/yr)  "  65.27
"Wheat and products      ",  "Food supply (kcal/capita/day)   "  526
"Wheat and products      ",  "Protein supply quantity (g/capita/day) "  15.88
"Wheat and products      ",  "Fat supply quantity (g/capita/day)  "  2.41
```

From there, the contents per unit of use are calculated:

```
p_nutContent("fbsProd, 'cal') $ p_fbs(fbsProd, 'food', 'data')
   = p_fbs(fbsProd, 'food', 'data') / [ p_fbs(fbsProd, 'food', 'data')] * 365 / 1000;
p_nutContent("fbsProd, 'prot') $ p_fbs(fbsProd, 'food', 'data')
   = p_fbs(fbsProd, 'protein', 'data') / [ p_fbs(fbsProd, 'food', 'data')] * 365 / 1000;
p_nutContent("fbsProd, 'fat') $ p_fbs(fbsProd, 'food', 'data')
   = p_fbs(fbsProd, 'fat', 'data') / [ p_fbs(fbsProd, 'food', 'data')] * 365 / 1000;
```

Note that we recalculate the daily per capita demands to avoid potential rounding errors in the original data. For two items, there are naming / definitional differences:

```
p_nutContent("Sugar, Refined Equiv",nut) = p_nutContent("Sugar (Raw Equivalent)",nut) * 16948935/155930208;
p_nutContent("Mutton and Goat Meat",nut) = p_nutContent("Mutton & Goat Meat",nut);
```

There are some cases where the FBS seems to use a different accounting scheme which can lead to double counting. Sugar cane, to give an example, shows “Food” use in FABIO, but FABIO also report food use from “Sugar (refined”). We therefore delete entries for a range of products:

```
p_nutContent("Sugar cane",nut) = 0;
p_nutContent("Sugar beet",nut) = 0;
p_nutContent("Beer",nut) = 0;
p_nutContent("Beverages, alcoholic",nut) = 0;
```

Alcoholic beverages are deleted to avoid that barley used for beer production is accounted twice.

The contents are multiplied with the “food” results, calculated as shown above:
Result exploitation

The three matrices with results on output, demand and land use / herds and the nutritional indicators are accessible via the interface.
Linking the physical MRIO for agricultural and food products FABIO to CGEBox

Tariffs

-1.40% < -0.35 < 0.20% < 0.40% < 1.26% < 1.85% < 1.85%
7. GUI and installation

7.1 Software requirements and access to the code

GAMS version 24.5 (released 2015) or higher is necessary to run the GAMS code, independently from using the code with or without the GUI. For GAMS versions before 24.8 (released 2016), it is not recommended to use the grid solve for the pre-solves or during data preparation. CONOPT4 is only available with newer GAMS version, if it is found, CONOPT should be used instead. The GUI requires a Java 8 run-time installation on the computer, for more detail see section 7.4 below, pages 283 ff.

The code and GUI are distributed in two ways. First, a zip archive can be downloaded from the GTAP web site (https://www.dropbox.com/s/olcqbgprk6i9gt/CGEBOX.zip?dl=0). The GAMS code reflects the status of the project in December 2018. In order to benefit from code improvements and bug-fixes, it is recommend to use the SVN option, see section 7.4 below, pages 283 ff.

7.2 Some comments for runGTAP and GEMPACK users

CGEBox is not thought or designed as a tool to easily switch from runGTAP or a model written in GEMPACK to a GAMS based CGE modelling platform. Even if CGEBox can replicate the structure of the standard GTAP model – however with equations written in levels and not in log-linearized form – the GAMS code uses different mnemonics and a different coding style. That is not only due to differences between GAMS and GEMPACK, but also reflects a different style how to code a complex model and to allow for modularity. Please refer to the equation by equation documentation of the core of CGEBox in the next section “Basic model equations”. Equally, the GUI does not attempt to mimic the touch and feel of runGTAP or other GEMPACK utilities.

Users which so far have worked with runGTAP and GEMPACK can clearly expect to benefit from their knowledge about CGE modeling and the concept of GTAP, and their experience of having worked with a modelling language. With CGEBox, they will face however a new modeling platform which will most probably lead also to disappointments if things work differently than presumed, if usability is for some aspects assessed as lower and time must be spent with the documentation and code to get things going. It might be best to expect that things work differently and to have a look at the documentation first, instead of simply starting to work with the system along the lines used from runGTAP.

Note specifically that upper and lower case letters in symbol names have no meaning in the sense of indicating variables in levels or in percentage changes. Equally, note that GAMS makes a distinction between parameters which are constants in a model and can never be changed by the solver and variables. While variables in GAMS can be technically turned into constant during a model solve by fixing them, parameters can never be turned in an endogenous variables. That implies that symbols defined as parameters can never be subject to a closure swap.

Sparsity might warrant some further comments. In most GTAP data bases, all transactions are non-zero, but many are often very tiny. CGEBox offers a filter approach to remove such tiny transactions from the global SAM. Doing so reduces data base and model size, thus speeding up model generation and solution as well as memory needs. However, allowing for sparsity in the data base requires that in most cases zero transactions are excluded in the GAMS code from data transformation and from entering the model. Otherwise, math trap errors such as divisions by zero are easily provoked. GAMS
Background

throws run time errors if that occurs and will as a default not solve any model after such an error occurs. That must be especially reflected when the user develops its own shock files.

7.3 Background

Working with a larger existing model such as GTAP can provoke serious entry barriers for newcomers, partly due to the need to learn specific model mnemonics underlying the code. That knowledge is necessary to analyze results if only model output directly produced by the modeling language is available, e.g. listings or proprietary binary result files. Equally, the sheer amount of symbols found in larger models (parameters, variables, equations, labels for regions, sectors, factors etc.) and the dimensionality of results can overwhelm beginners. That might shynem them away from a fascinating research field, even if excellent model documentation is available, such as in the case of GTAP. Memorizing model mnemonics and partly structure is rather independent from the modeling language used – beginners will always have to digest a larger amount of information to make the first steps with a larger economic simulation model.

It might therefore be useful to reduce entry barriers such that students might become enthusiastic about the model’s capabilities and then take the more tedious steps to familiarize themselves with the model’s code. Therefore, CGEBox comes with a Graphical User Interface (GUI) which complements the GAMS code. The reader should however note that the GUI linked to CGEBox follows a somewhat different approach compared to runGTAP, the GUI available for the GEMPACK version (see also Britz 2014 and Britz et al. 2015) or, for instance, the GAMSIDE often used with economic models realized in GAMS. As a consequence, some functionalities found in runGTAP are not comprised the GUI linked to the GAMS version of the GTAP model and vice versa. The development of the GUI for the GAMS version and GAMS code for post-model processing feeding into the exploitation part of the GUI went partly in parallel with the development of the model codes to ensure seamless inter-operability. However, it is important to note that the GAMS code can be used completely independent from the GUI.

The GUI provides two major functionalities: firstly, it allows running the model while also liberating a user to carry out changes that are otherwise necessary in the GAMS code—such as to select a specific data base or shock file. Instead, controls on the GUI allow steering the model run, thereby avoiding code edits. That include configuration of the model by selecting modules and parameters files. Secondly, the GUI offers tools to view and analyze model results. Specifically, a post-model reporting part maps back the variables into a structure similar to a SAM, and additionally stores quantities, prices, values, tax rates and tax incomes. That structure can then be viewed in a flexible exploitation tool. The post model code also provides some eventually useful aggregations, e.g. to total intermediate input, total factor input, total output, total demand and world totals and provides a welfare decomposition. The user can also provide based on an aggregation definition file generated with GTAPAgg a second, more aggregated sectoral and/or regional aggregation which is used for post-model aggregation of these results. The exploitation tools available with the GUI provide interesting features: they allows to view simultaneously results from different shocks without running additional programs, support maps and a wider range of graphics as well as basic statistics and thus might hence also be of interest to seasoned modelers. Furthermore, the GUI comprises some additional utilities: a tool similar to “EXAMINER” in GTAP which shows the linearized version of the model’s equations and allows inspecting parameters and variables found in these equations. Similar to “AnalyzeGE”, that tool also allows decomposing changes of the LHS of each equation to changes of the variables on the RHS. Another utility allows documenting the code in HTML pages. Finally, instead to using the GUI in interactive model, a batch mode allows to perform model runs. The batch reports these run in a
CGEBox – a flexible and modular toolkit for CGE modelling in GAMS

HTML page and allows parallel execution of different shocks or of the same shock in different model variants.

The paper provides a hand-on guide on how to use the model in conjunction with the GUI. The latter is based on a GUI generator for GAMS projects (http://www.ilr.uni-bonn.de/agpo/staff/britz/ggig_e.htm, Britz 2010b), which is also used for some larger projects such as CAPRI (http://www.capri-model.org/dokuwiki/doku.php?id=start), but also a range of other modeling system such as the Policy Evaluation Model (PEM) by the OECD; a dynamic single farm model, an Agent Based Model of structural change in agriculture or a recursive-dynamic Hydro-economic river basin model. For those interested in a discussion about interfaces used with economic simulation models, see for example https://www.gtap.agecon.purdue.edu/resources/download/5864.pdf (Pérez Domínguez et al. 2012) or Britz et al. 2015. The GUI generator is flexible enough to also host extensions as shown by the implementations of GTAP-AEZ, GTAP-AGR and GTAP-E.

A first version of the GUI was developed for a class at Bonn University, Institute for Food and Resource Economics, in the winter term 2013/2014, building on Tom Rutherford’s GTAPinGAMS version. The students had already some knowledge of GAMS and CGEs, and wanted to use a global CGE in a project. A year later, again a class of students wanted to use a global CGE, which led to further improvements such as flexible aggregation of regions in the mapping viewer or the introduction of sensitivity analysis. In 2014, when the GTAP Center decided to release a full-fledged version of the standard GTAP model in GAMS, it was decided to adjust the interface to operate with that version. The further work on GTAP led to improvements to the GUI generator, also to the benefit of other modeling systems applying the GUI. The GUI itself is distributed for free. However, the underlying Java code is currently not open source.

7.4 SVN checkout

The preferred option to access code and GUI is to benefit from SVN, a software version system on which the model codes are hosted on the repository https://svn1.agp.uni-bonn.de/svn/cgebox/. The option is especially recommended for users who both want to use the GUI and foresee also own changes to the code. In the SVN repository, the development of CGEBox continues. We expect that over the next few months additional modules will be integrated into the code and clearly, bugs corrected and improvements implemented once the code is more widespread used. Using SVN allows updating more easily to bug fixed or new extensions.

Therefore, as a first step, we recommend installing a SVN client such as TortoiseSVN (http://tortoisesvn.net/index.de.html, freeware) on your machine. Afterwards, make a checkout of the repository https://svn1.agp.uni-bonn.de/svn/cgebox/ (i.e. download the code from the server to your local machine), using the user id “cgebox” and the pass word “cgebox”. Using SVN will allow you to keep your local copy automatically updated to code improvements, to check which changes you introduced in the code and to switch easily back to original versions of all or specific files if deemed useful, if necessary on a line by line basis.

The basic steps for using SVN to install CGEBox based on TortoiseSVN are detailed below. First, navigate in the windows explorer to the disk / directory where you want to install GTAP, and open the context menu with a right mouse click:

283
SVN checkout

Chose, “SVN Checkout …” and copy the URL “https://svn1.agp.uni-bonn.de/svn/cgebox/“ in the first field as shown below and press “OK”.

In case you get a warning such as:

chose “Accept the certificate permanently”. In the next dialogue, enter the username and password (cgebox, not in the one shown below), check “Save authentication” in the checkbox in the lower part of the dialog and press “OK”.

The SVN client will next download the newest release of all files to your computer which might take some time:
And should end with a “Completed At revision ..” message.

After you press “OK”, you should find the new folder on your computer:

The green mark indicates that there are no local modifications to files found in the folder, i.e. that the files on your disk are identical to those just downloaded from the repository. If you introduce changes in these files, a different symbol will be shown.

For further information on how to benefit from TortoiseSVN for your daily work with CGEBox for other projects, please refer to the web. We would like to mention here only that you have always two versions of each file on your computer: (1) the so-called local working copy – these are the files in your normal directory with which you can work as usual and (2) a second version in a hidden data base which reflects the latest download from the repository. That allows the system to e.g. find out which files changed and to highlight changes line by line. It is important to note that you will never lose edits on your local computing when you perform “updates”, i.e. download newer versions from the central repository.
7.5 Starting the GUI

The GUI requires a Java 8 runtime environment (JRE, freeware); the JRE should be found on the path. Please make sure that you install the 64-bit version of the JRE on 64-bit operating systems. After downloading the GAMS sources and other files via SVN or having unzipped the downloaded folder, navigate to the GUI folder:

and double-click in the GUI folder on the file “cgebox.bat”; it should open the interface. You might want to put a shortcut to that batch file on your desktop to easily start CGEBox.

You might first see a message which tells you that a GAMS executable is not yet registered:

You can first ignore that warning for now. After pressing “OK”, you should see a program opened as below:

If that does not work, open a command prompt, start from there the “cgebox.bat” batch file and analyze the error. Most probably, JAVA is not found. In that case, either put it on the path or change the batch file such that it calls Java from the directory where it is installed.
CGEBBox – a flexible and modular toolkit for CGE modelling in GAMS

Figure: Interface at first start

Note: The layout shown in screen shots might not be completely identical to the distribution version

The left hand side allows selecting work steps and the tasks comprised in them; the right hand side carries controls to steer these tasks. The bar in the middle comprises buttons to start the GAMS code of a task and exploit the resulting output.

Typical reasons why the GUI does not open and possible remedies are described briefly below:

- **Java is not installed** or not registered on the PATH. In order to test that, open a DOS prompt and type Java. If you receive a message that the command is not found, (re-)install Java and make sure that Java also updates the PATH during the installation.

- **A wrong Java Runtime Environment** is installed. Please first check if Java version 8 is installed and not some older version (that check is not only useful for the GUI of CGEBBox, but also generally for security reasons if one uses Java plugins in web pages). On 64 bit Windows operation systems, a 64 bit version of Java should be used. You can test that again in a DOS prompt by typing “java –version”. The response should look similar as shown below (note the string “64-Bit”). Unfortunately, many 64 bit Windows machines use a 32 bit browser, and if you install Java from such as browser, the 32 bit version is downloaded. The link JRE points both to a 32 and 64 bit version, make sure you select the 64 bit version on a computer with a 64 bit OS. Installing a 64 bit version on a machine where the 32 bit version is already installed does no harm and makes the 64 bit version the default.
• If that still does not help, open a DOS prompt, navigate to the GUI folder and type “cgebox.bat” – possible errors will be shown in the window. In case you cannot find help in your team with regard to these error messages, contact the author.

General information on how to work with the GUI can be found in the GGIG user guide at http://www.ilr.uni-bonn.de/agpo/staff/britz/GGIG_user_Guide.pdf. That pdf document can also found in the folder “GUIjars” in your installation. Please note that the hints given below in the document on using the interface are only thought as a first introduction, refer to the GGIG user guide for any further details or use the inbuilt help system by pressing F1.

We would finally like to note that we did our best to test the combination of the CGEBox code and the GUI, but that improvements are certainly possible.

7.6 First steps

The installation comprises a set of results for testing the interface without the need of actually running GAMS code. You can now already look at these results by selecting on the left hand side the work step “Simulation”:

You will see the interface for the “Scenario editor” which is discussed later. We skip that functionality here and move directly to the task “Simulation”:
and next pressing the “Exploit results” button. The layout will change as seen below. Please click now once in the “Dataset” selection (otherwise you will get a warning message later):

![CGEBox GIG-GUI](image)

Figure: Scenario selection for exploitation

Select the scenario “10x_10_example_test” and press “show results”, you should see a table similar as the one shown below:

Note: In the year selection panel, nothing should be selected for comparative-static runs.
(Once you have produced your own results, you can find the data bases you used and the scenarios generated in the drop-down boxes, and you might combine different scenarios for comparison.)

The "[]" view button in the upper left corner lets you select different views on your results:

7.7 Making the interface working with GAMS

In order to use the GUI to generate data sets or for simulation runs, you have first to register a GAMS executable. In order to do so, first leave the result viewer as shown below.
And open the setting dialogue from the menu bar.

First, you should enter your name:

Next, click on the tab “GAMS” and either type in text field next to “Path to GAMS.EXE” which “GAMS.EXE” you would like to use. Alternatively, you can use the button to the right of the field to navigate to the directory where “GAMS.EXE” is found via a file selection dialogue. Please do not only enter a directory, but the full file name as shown below (and choose GAMS.EXE, not the user interface of GAMS, GAMSIDE.EXE). Depending how you install GAMS on your machine, the correct GAMS executable might already by entered by the Java code.

If you are using regularly a text editor, you can register it under “Other options”
In order to check if it worked, press the “Compile GAMS” button. You should see now the compile output from GAMS in the window below the button.

If you have registered an editor, you can also check its proper functioning: a right mouse click in the window with the output should open up a pop-up menu:
That pop-up menu offers you the options to open in your favorite editor the GAMS file, the listing produced by GAMS and the include file generated by the interface.

Notes:

- The use of the GTAP-AGR or GTAP-E module works best with a data base with a full disaggregation of primary agriculture respectively detail for the energy sector.
- Some pre-defined configuration such as “MIRAGE” comprise also list of sector which assume that you use a data base with full sector resolution.
- You cannot use the global bank mechanism (Global equal returns to capital) if capital is declared immobile. There are further combinations where warning are raised.
- A license either for PATH or CONOPT is required to solve the model. Using the pre-solve algorithm requires CONOPT, as does using the filtering approach when generating a data base.
7.8 Inspecting the results

Before we turn to the exploitations tool of the GUI, the reader should be reminded that CGEBox allows for a wider range of possibilities to look at results:

1. As with any GAMS model, solprint=on will produce a listing of the model solution showing variables and equations, see the GAMS documentation for details. That option can be switched on from the interface as discussed above.
2. If additionally, LIMROW and LIMCOL are non-zero, the individual equations will be shown with the Jacobian entries. The numbers will limit the output of individual instances shown and can be set by the GUI. For more information on how to interpret that output, please look at the GAMS manual.
3. If the output option GDX is switched on, all GAMS symbols (sets, parameters, variables) will be outputted to a GDX container and can be analyzed in a GDX viewer, either the one delivered with the GAMS IDE or the GDX viewer built into the GUI.
4. The model’s results can be mapped back into a SAM, and the SAM will be stored in the GDX.
5. The information from 1.-4. can also be inspected with the “Equation and Variable viewer” discussed in another section, which also provides a decomposition of each equation similar to “analyzeGE”.
6. Finally, the exploitation tools can be used, which also cover the SAM, as discussed in the following.

Which option works best depends on the use case and user preferences. Model listings with “limcol” and “limrow” switched on are extremely useful during model development and debugging, whereas the exploitation tools are probably the best approach to systematically analyze results from a shock. Individual equation decomposition can complement both approaches. We can only recommend trying out all approaches at least once to find out which one fits best one’s preferences under specific use scenarios.

Inspecting results with GUI is nothing new: You have done that already if you followed the short introduction … so press on the “Exploit results” button and next on “Show results” again. Use the “NoShock” and your own scenario:

And now, you can see the counterfactual and the simulation side by side in the tables:
You might now want to add relative differences: click with the mouse in the table or use the “Customize” button in order to customize your view (see screenshot below). Choose “Values and percentage difference” as the “Comparison output”, select “Scenarios” as the “Data dimensions used for comparisons” and make sure that the “NOSHOCK” scenario is used as the comparison element:

After closing the dialogue, you find now relative difference in small numbers beyond the simulated results in each cell of the table.
Inspecting the results

(Note: as expected, total utility increases, but prices drop …).

There are many other functionalities found in the exploitation tools, the GGIG user manual discusses these options: http://www.ilr.uni-bonn.de/agpo/staff/britz/GGIG_user_Guide.pdf.

If you want to leave the viewer again, use “Exit” from “View Handling” menu:

7.8.1 Notes for GEMPACK users or users familiar with other CGE models

- The view “Model overview, SAM” shows a SAM generated from the model results (including row and column sums and potential imbalances) if the option “Store SAM in GDX” is switched on.
- Many tables comprise additional information on aggregates on top of the other rows. Only in some cases is what is called “total” a simple sum of the rows below. Thus, the information should generally not be confused with the “sum” information shown in “viewhar”.
- There are only a few cases with a 1:1 relation between a variable in the model and numbers shown in table; typically the results shown in the different views stem from some post-model processing (e.g. multiplying a quantity index with a price).
- Instead of using the button, “Show results” which presents the different views discussed below, the “Load content of files in GDX viewer” allows to inspect all symbols used in the code, including all variables and the generated SAM (see next section). The GDX files are stored under “results\run” and can be naturally be opened with another GDX viewer such as the one comprised in the GAMSIDE.
- If the user want to inspect variables similar to “AnalyzeGE”, including decomposing equations, she can use the “Equation and variable viewer” (see below).
- Note again that all model equations are written in levels and not in relative changes.
7.8.2 Relative difference for all variables as in runGTAP

GEMPACK users typically compare simulated against benchmark levels for model variables. That is also possible with the interface. In order to do so, select the file with the result and press the “Load content of files into GDX viewer” button:

That will open a new window as shown below:

The window “List of table loaded from GDX file(s)” shows the status of all GAMS symbols (variable, equations, sets, parameters) after the solution of the shock. Double-click on any symbol you are interested in, e.g. the factor income “facty” as shown in the screen shot below. That will open a window where the results are shown, for the base case (= as initialized from the data base), the benchmark test (= check) and the shock.
Inspecting the results

In order to show percentage differences against the benchmark, open the option dialogue by pressing “

”. Select e.g. “Values and percentage differences” under comparison output, chose the data dimension which end with “(check; …) and the item “check”:

The window with the result will now also comprises the information on the relative change as shown below:
7.8.3 Trouble shooting with the viewer

If you are not sure what controls are for, try pressing the F1 button when the mouse is hovering over the control. In most cases, the PDF user guide will open at a page offering information.

Especially when working in the beginning with the viewer, one often ends up with a table showing no longer any data, an awkward selection, an unsuitable pivot etc.. The following strategies can be used to overcome such problems:

1. use the “close” button to remove the view, and use “View Handling”, “New Data View” to open a fresh one.
2. Leave the viewer (“View Handling”, “Exit”), and click on “Remove view specific settings” under “Settings” in the menu bar. That will set the viewer back to the original defaults.
3. If that does also not help, try to close and re-open the application.
4. If the viewer still shows curious things, it is most probably some programming error … contact the author.
Inspecting the results

7.8.4 Overview on existing views for exploitation

Model overview/Model properties: reports some basic attributes of the model instance as seen below, such as the modules switched on, closures used or the size of the model:

There are also two tables which report the aggregation of the data base under Model overview/regional aggregation and Model overview/sectoral aggregation:
Model Overview/SAM reports the results in a SAM, including row and columns sum and potential imbalances. Due to rounding errors and feasibility tolerances of the solvers, small imbalances in relative terms are possible and not of concern:

Note: the SAM can only be shown if SAM output was activated on the interface when the simulation was run.

Model Overview/CES products nests reports the nesting structure used in the production module:

Similar views are available for the nesting used for factor supply and final demand:
Inspecting the results

The table **Welfare/Income** provides an overview in key results such as GDP and price indices:

The three tables **Welfare/Money metric decomposition**, **Welfare/Money metric decomposition, by product** and **Welfare/ Money metric decomposition, by factor** support an welfare analysis. “By products” reports welfare gains or losses related to output price changes, by factor linked to changes in factor prices or quantities:
A graphical view on income generation and use provides **Welfare/Node graph**, the following example uses advanced options, such as coloring of the nodes by simulated change and sizing them according to simulated value:

Markets/Demand by product: Shows a table with demand by institutions, products and totals shown in the row. The items box allows for looking at quantities, prices, tax rates, value and tax income, the origins by “domestic”, “imported” and “total”. The first box allows selecting the regions. Note: total is an aggregation over all products.
Inspecting the results

A predefined view “Demand, by product, bar charts for scenario comparison” as seen below shows how the combination of a certain pivot, view type while using the comparisons can be used to produce bar charts showing relative differences. It might be useful to filter out the comparison scenario from the view such that the empty upper graph is not shown.

Note: you use the second “filter” bottom next to view type to “view type” (double click on it) to open a dialogue which lets you remove the benchmark scenario:
That will produce a nicer graph.

Markets/Demand by institution: same content as before, but different pivot (could also be quickly produced by using the pivot possibility which can be applied to any view)

Markets/Final demand nests: shows the demand aggregates –quantities, prices and values – according to the active demand nesting:

Markets/Balance: Shows total use and how it is sourced:
Demand, per product, per capita in $ is an example for a tabled definition which uses the in-built expression evaluator, it divides total demand by the population size:

That view can alternatively be visualized as a map in Demand, per product, per capita in $, map:

Maps can be made from any table by putting the regions in the rows and choosing “Map” under “View type”.

Markets/Intermediate demand: break of the intermediate demand by sector. Note: the total in the columns is an aggregation over all sectors.
Markets/Factor demand: report primary factor use, price etc. by sector

Sectors/Sector overview: reports for each sector total output, output taxes, total intermediate and total factor demand, as well the individual intermediate and factor demands.

Sectors/Sector cost shares: a selection of the value item of the view above, normalized by total output:
Inspecting the results

There are further tables available to bi-lateral trade which can also be visualized as flow maps as shown in the screen shot below.

and more might be added in the future. But the examples above might be sufficient to judge if these views (in addition of using a GDX viewer to look out variables) are a useful addition to result analysis.
8. Sensitivity analysis

One of the daunting aspects of using larger simulation models is the high number of parameters needed, both behavioral ones and parameters linked to technology. Generally, most of these parameters are not known with certainty which raises the question how robust results from a shock are. The same often applies to the exact definition of a shock. The idea of sensitivity analysis is to repeatly solve the same structural model under the same (structural) shock with different parameters to assess the distribution of results. That can help to pinpoint parameters which strongly drive results (which explains the notion of “sensitivity”) but also to learn if the model’s structure with the underlying behavioral and technology assumptions or its parameterization ultimately determine the direction and size of simulated impacts. If the latter are not changing much under different set of parameters, the results can be termed robust. Note here the difference to an econometric exercise where the distribution of the error terms gives immediate information on how robust results are; in most cases, it is even possible to calculate confidence intervals for simulated results. That is generally not possible with large-scale simulation models, not at least as we have not overall knowledge about the “true” multi-dimensional distributions of the parameter space of the model. Still, it is reassuring to find that core results do not differ much even if parameters considered sensitive are changed.

GEMPACK and thus using runGTAP with GEMPACK supports systematic sensitivity analysis (Channing 1996). CGEBox also offers similar functionality drawing on experiences with other GAMS-based models. In order to keep the technical solution relatively easy, the following approach is chosen:

1. The GAMS program which is used to run a single shock is also used for each single sensitivity experiment, in order to use as much as possible existing code and to avoid duplicating code fragments. Note that some parameter or shock changes will requiring a new benchmarking of the model which is supported by the code automatically, even if that drives up somewhat the overall time needed.
2. A second GAMS program “sensitivity.gms” acts as the master program. In combination with a utility from SANDIA labs, it defines the draws and executes in parallel GAMS children. It let each child solve the same (structural) shock. Each child uses its own parameter settings; changes in these settings are defined by the experiments.
3. That second GAMS mother program collects the results from the children and combines them into one GDX file which can be inspected later. It always reports the mean and standard deviations over the draws, but can also store the results for each draw which clearly requires from memory and disk space.

Currently, the sensitivity analysis allows changing any parameters with up to three driving sets. The user can define for each set on each parameter if each element is subject to a specific random shock or if the same shock is applied to all elements on the set.

Whereas Arndt 1996 uses Gaussian Quadratures, the approach in here is based on Latin Hypercube Sampling (LHS). The user chooses the number of draws, and the LHS uses stratified random sampling for space filling design. The LHS is chosen as it can be easily applied also in case of non-symmetric, truncated distributions. In the default case, the LHS as a stratified random sampling mechanism simply returns (more or less) uniform distributed draws over the chosen potentially truncated PDF. The mean

of the draws is generally close to the mode. The user should keep in mind that non-symmetric bounds will lead to a systematic deviation from the mean parameter used without sensitivity analysis.

The character of an LHS should generally recover the basic character of the distribution with a limited number of draws such as ten. Ten draws will imply that for each parameter, the PDF of its distribution is sliced into ten bins, and one draw is made from each bin. If you draw from a uniform between 0.5 and 1.5, you will hence get one draw from the interval [0.5,0.6], one from [0.6,0.7] …. The GAMS code will scale the draws from the LHS such that the average draw for each factor is equal to its desired mean. You can either use random pairing where the draws for each factor are done independently from each other or use restricted pairing which will try to reduce the correlations between factor draws. The user has the choice between three different distributions, all truncated at the chosen lower and upper limit:

1. Uniform
2. Truncated Normal distribution
3. Triangular distribution

Equally, the user can determine with the draws are added to the base case or multiplied with it. The combination of user set truncation points and distributions allows for a rather flexible design of the experiments. If the lower is equal to the upper bound, the parameter will not be subject to sensitivity analysis. Clearly, at least for one parameter, the upper and lower bounds must differ. The following section details the options.

8.1 Controls for sensitivity experiments

The left-hand panel labelled “Draws” determines

- The **number of draws**. For each draw, a full model solve is performed, increasing the number of draws implies a higher sampling accuracy but also longer execution times. If the individual draws are not stored, more draws will not imply higher memory or disk space use for the final result.
- If draws for the factors are generated independent from each other (“Pairing random”) or if the LHS should try to reduce correlations between factors (“Pairing restricted”). The latter can drive up the time to construct the experiments.
- How many **GAMS child processes are used in parallel**. It is generally not recommended to use more parallel processes than cores on the computer. As CONOP4 solves in parallel, it might be even best to use only one or two parallel processes for models where the final solve of the full model takes a long time. For larger models, pre-solve can be used which in most cases will help to speed up the overall time especially in sensitivity analysis. Keep also in mind that modern processor layouts allow to temporarily increase the frequency of single cores which can speed up tremendously non-parallelized processing on multi-core machines. The higher frequency will heat up that specific core, therefore, the BIOS will automatically re-schedule threads to another core once a critical temperature is reached which requires to
reduce its frequency. Forcing your computer to run many threads in parallel might hence mean that none of your core can boost its frequency. Here, careful listening to your computer might help: if your computer permanently makes a lot of fan noise, reduce the number of parallel threads. The least wanted outcome from a sensitivity analysis is a destroyed motherboard … (that would give the term “robustness” a new meaning …).

- The user might also choose “Only generate draws” to prevent the actual model runs, in order to solely check the layout of the scenarios. The file “LHS.lst” found in the scratch directory will show you detailed statistics such as the individual draws, the correlation between the factors etc.. The resulting draws for the LHS are also reported in the GAMS listing file (gams\sensitivity.lst): A look here might help to get an idea if the distributions are sensibly chosen, keeping in mind that it will not report the parameter values themselves, but either the multiplicative change (as below) or additive ones.

If you only want information on the mean and standard deviation of the results, keep “Store each draw” off. Otherwise, all results from all draws are collected in the GDX container. That allows you to generate e.g. histograms or scatter plots as discussed below but can also lead to very large GDX containers. In doubt, run the base case with a normal simulation and open the resulting GDX container from the run under “results\run” with the GAMSIDE or similar. Check the number of non-empty elements in the parameter “p_results” and its size on disk.

Multiply the numbers reported there by the number of draws to get an idea of the size of the resulting combined result set. Don’t count on being able to load more then say 10-20 Mio non-zeros into a viewer without manually changing run-time options for the Java run time engine or even running out of memory on your machine.

You might also consider switching some part of the post-model processing off to reduce the size of the result set. For instance, if you are not interested in the distribution of bi-lateral trade flows, tick off “Store bi-lateral results”; you can also reduce the size by only reporting tax rates, but not tax income for each item or you might not need the distributions of the welfare decomposition. Reducing post-model reporting clearly also speeds up running the individual experiments.
The right hand panel “Factors” steers the design of experiments for each parameter subject to sensitivity analysis. The standard example, delivered as the default with the GUI, changes the second level Armington elasticities σ_W around their given levels, using multiplicative draws with a truncated normal.

The “symbol” field as the first text field defines the name of the GAMS parameter subject to sensitivity analysis, here “σ_W”. The three following text fields (1. Set, 2. Set, 3. Set) are the names of the sets for which changes are introduced, in order they appear on the parameter. In our example, σ_W is defined over the nations $rNat$ and the commodities i such that the third field has to be left empty.

If we want to restrict the draw to only some regions or commodities, we need to define sub-sets in our shock file and use it in the table above. If a parameter has less than three dimensions, leave the last field empty etc.. If a parameter has more than three dimensions, you need to use a helper parameter instead as discussed below.

For each set, we have the mode choice between “same” or “draws”, where “same” means that the same random shock being used for all elements in each experiment, and “draws” means that each set elements receives its own shock in each experiment. If you use a 57x10 data base and you chose “draws” both for regions and commodities, you will hence have 570 independent factors in our LHS.

Let’s start with “same”, “same” which implies that we have only one factor level for each draw:

The include file for a specific experiment will comprise statements as shown below, i.e. all 10x10 = 100 elements in σ_W will for one experiment (i.e. model solve) be changed by the same relative random change, i.e. the LHS will work with one factor only:
If we put instead “draws” on the region set $rNat$:

We get for each experiment a different random change for each region as the LHS will work with 10 factors in our 10x10 example data set:

And finally, choosing “draws” for both sets will generate 10 regions x 10 commodities =100 factors
If you want to work e.g. with a variable or parameter which has more than three dimensions, you can simply type in a new symbol name:

![p_shock rlat same √ i same √ rmat1 same √ T]

The program code will put random draws according to your desired layout in a run specific include file; values which you can pick up in your shock file.

Next, we can determine if the random draws are multiplied with the base case of the parameter or added to it (that choice is only relevant if the parameter is already declared such that are values to add something to or multiply with, otherwise, the draws are stored as shown for p_shock above):
For a multiplicative draw, the range of the draws defined up “lo” and “up” should set around unity which the “mode” close to unity. For additive draws, the “lo” and “up” should be around zero and the mode close to zero. The “Std.Dev” field is only relevant for the truncated normal. The mode and std.dev. in case of a truncated normal refer to the underlying not-truncated normal distribution.

Note that bounds which are not symmetric around a mode of unity for multiplicative or a mode of zero in case of additive draws will imply a systematic difference between the parameters of the base case and the mean of the draws for each parameter (besides the fact that the mode of the draws will differ from the parameter inputted).

8.2 Parallel solves and analyzing the results

The actual solve for each individual experiment starts from a savepoint generated after loading the data base, such that execution time is only spend on benchmarking, model generation, solving and post-model reporting. Fifty draws of the 10x10 model under a 50% multi-lateral trade simulation experiment took about 30 seconds to solve on my rather fast laptop, another 5 seconds are spend to collect and combine the results. 20 draws with a 57x10 model under the same shock took about two minutes, with the 57x24 model, time goes up to about 6 minutes.

When you inspect the results, the interface will allow showing either all draws and/or the standard case, the average of the draws and the standard deviation:

If only the mean over the draws is selected, the result tables look almost identical to a single simulation run. The tables will report two outcomes: (1) the mean of the draws labeled “meanDraws” and the (2) result at the original parameters “base” – what one would simulate without any sensitivity analysis and (3) the standard deviation over the draws:

If the draws are selected, you get views such as below:
Parallel solves and analyzing the results

That allows you to analyze each draw, if wished. Alternatively, the statistics built in the interface can be used. In order to do this, open with a right click in the table, the pop-up menu and select statistics:

Select the statistics you want to be shown (such as mean and stdDev) and select “Only show outliers” to only show outliers and statistics:

A view with the core income results is defined which generates histograms:
Note: If several scenarios are analyzed, the distributions for several scenarios will be shown together.

Alternatively, the “Scatter plot” type graphics can be used to plot additionally the correlation between the variables depicted:
If the view type from existing tables is changed to “Scatter plots”, the result might look as below (the example shows different types of prices in each plot, and different sectors in the rows/columns:

The visualization of histograms and scatter plots can be improved, if the graphics settings are changed such that (1) zeros are treated as missing values, and (2) zero is not automatically included in the axis range:
The resulting scatter plots and histograms look as follows:
9. Getting an overview on the code

The GUI offers two possibilities to ease working with the code:

1. Generation of a set of static HTML pages
2. An equation, parameter and variable viewer linked to a specific model instance, which also allows looking at the GAMS code.

9.1 HTML documentation

A HTML documentation of the code can be generated via “Utilities/Build HTML documentation”:

The documentation will include any changes you introduced to the project’s GAMS code.

First choose the directory where the files should be stored (best use the “HtmlDoc” directory as shown below; beware: the utility will generate many files, do not use a directory where other files are already stored). The input files are found in the folder where GAMS was run, in the case of standard GTAP model in GAMS, typically in the “model” directory.

You should be able to find a file named “simulation.ref”. Make sure that “Query SVN Status” is switched off and next press the “Generate HTML documentation” button.
The program will work for a while and should end with “HTML documentation is ready” as shown below.

Afterwards, you find a in the chosen output directory a list of file, “index.html” is the starting point.

You can e.g. open all “Variables” used in the task “simulation”, clicking with the mouse opens a symbol page:
9.2 Equation and variable viewer (similar AnalyzeGE)

Whereas the HTML pages document the project, the equation and variable viewer helps you to analyze a specific model instance. The necessary input files are automatically generated with each run in comparative static mode if “CONVERT” output is chosen.

(note: one might want to change the first GDX files to the last experiment you have run)

Select “Load convert output and GAMS file into viewer” from the file menu:

You get now view like below:
The viewer allows you to see:

- Linearized views on the equations, which you can select via the selection button above. The information in green behind each equation provides, separated by commata:
 1. The absolute change in the variable
 2. The absolute change multiplied with the Jacobian, i.e. the approximate change in the equation due to the simulated change
 3. The contribution of the variable to the change in the LHS in percent, using information in the absolute changes in the LHS and the variable and the related Jacobian entries. The variable which the code analyzer has detected as the LHS is indicated with a * - in the example below that is xd. For the LHS, the relative change is reported. In example below, the change is almost entirely coming from the change in nd (100%), the contribution of the other changes is very small.

\[
\text{xdeq(SouthAsia,MeatLstk-c,ProcFood-a,shock)} \text{ "Agents demand for domestic goods "} \ldots
\]

\[
-0.00902671001153436\times(0.999999486802\times(1.0000000513198\times\text{pa(SouthAsia,MeatLstk-c,shock)}
\{-0.005,-7.28-5.1.066\})**(-2.130359428805196)
+0.0046540770285587*(1.0000000249911\times\text{pmr(SouthAsia,MeatLstk-c,shock)}\{0.0033,-4.73-5.0.89\})**(-2.1305988516)
+(-0.149371530886303)/\text{pa(SouthAsia,MeatLstk-c,shock)}\{-0.005,-7.28-5.1.066\})**3.130598422
89156*\text{nd(SouthAsia,ProcFood-a,shock)}\{0.67,-0.005,100.04\}
+0.18322553730227*\text{xd(SouthAsia,MeatLstk-c,ProcFood-a,shock)}\{0.034,0.0062,0.6\} \times 0;
\]

- A GDX viewer which allows merging of symbols (from one or several files) for combined analysis.
- A quick view on any symbol: click on any symbol in the GAMS code shown in blue, and it will be loaded in the “Symbol from GDX” view. You can directly compare your counterfactual against the base (or any scenarios against each other which you loaded as GDX file).
Equation and variable viewer (similar AnalyzeGE)

Code Snippet

```plaintext
# Profit Function for Firms:

1. Parameter
   - $\text{theta}_{1,j,r}$: Profit share of value added,
   - $\text{theta}_{2,j,r}$: Domestic share of intermediate input,
   - $\text{theta}_{3,j,r}$: Value added share of external output

2. Variables
   - $x_{1,j,r}$: Value added
   - $x_{2,j,r}$: Intermediate input
   - $x_{3,j,r}$: External output

3. Equations
   - $\text{theta}_{1,j,r} = \frac{v_{01}(j,r) + \text{theta}_{2,j,r} + \text{theta}_{3,j,r}}{\text{theta}_{1,j,r} + \text{theta}_{2,j,r} + \text{theta}_{3,j,r}}$
   - $\text{theta}_{2,j,r} = \frac{v_{12}(j,r) + \text{theta}_{3,j,r}}{\text{theta}_{1,j,r} + \text{theta}_{2,j,r} + \text{theta}_{3,j,r}}$
   - $\text{theta}_{3,j,r} = \frac{v_{23}(j,r)}{\text{theta}_{1,j,r} + \text{theta}_{2,j,r} + \text{theta}_{3,j,r}}$
```

4. Data
 - v_{01}, v_{12}, v_{23}: Values for each (j,r) pair

Data Table

<table>
<thead>
<tr>
<th></th>
<th>SKY</th>
<th>RSA</th>
<th>ASS</th>
<th>EUR</th>
<th>SGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>np</td>
<td>0.37</td>
<td>0.35</td>
<td>0.60</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>np</td>
<td>0.80</td>
<td>0.90</td>
<td>0.70</td>
<td>0.20</td>
<td>0.80</td>
</tr>
<tr>
<td>np</td>
<td>0.32</td>
<td>0.28</td>
<td>0.25</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>np</td>
<td>0.29</td>
<td>0.25</td>
<td>0.22</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>np</td>
<td>0.65</td>
<td>0.44</td>
<td>0.50</td>
<td>0.24</td>
<td>0.34</td>
</tr>
<tr>
<td>np</td>
<td>0.43</td>
<td>0.46</td>
<td>0.45</td>
<td>0.46</td>
<td>0.45</td>
</tr>
</tbody>
</table>
9.3 Technical documentation

9.3.1 Overview on directory structure

The screenshot below shows the directory structure of a “CGEBox” installation. The information is only provided for those who have an interest into technical detail.

The GUI with the Java libraries is found in GUI. The results directory comprises the output from model runs. The data directory comprises also the GAMS readable versions of available data bases. All GAMS files can be found under “gams”, in the subdirectory “scen”, scenario templates and user defined scenarios are stored. Results of model runs are found under “results/run”. The directory “expRefDir” and “HtmlDoc” are used to generate a HTML based documentation of the GAMS project.

9.3.2 GUI overview

The GUI is programmed in Java and based on GGIG (Gams Graphical Interface Generator), which is also used for other projects, e.g. CAPRI (www.capri-model.org). While binaries are distributed for free, the Java code itself is currently not open source. It uses third-party libraries provided under licenses which allow for further distribution, and often as well code changes. The main jar to start is “jars\ggig.jar”. In order to modify the GUI, no Java programming is necessary, as the Java code reads a XML file (“gui\GtapInGams.xml”) which defines tasks, work steps and the individual GUI controls. Equally, a XML file (“gui\GtapInGamsTables.xml”) defines the different views. The link to GDX files is based on the Java API distributed by GAMS.com as part of any GAMS installation, and uses dynamic link libraries. As both Java and GAMS are available also for non-Windows operation systems, it would be possible to also port the standard GTAP model in GAMS to other software platforms. Indeed, a CAPRI user had a few years back generated a native MAC version.

The interaction between the GUI and the GAMS processes is based on includes files which are generated anew for each run and capture the state of the user operated control.
9.3.3 Processes

In order to work with the model, GTAPAGG (which is clearly not part of the installation) must first be used to produce a zip file which comprises the necessary GTAP data, parameters etc. at the user chosen aggregation with regard to sectors, regions and factors. The GTAPAGG output should be stored in the “data” directory. The zip file comprises data in proprietary GEMPACK formats and cannot be used directly with GAMS code.
Next, the “LoadGTAPAgg.gms” programs reads that output from GTAPAGG and converts it into GAMS symbols which are stored in a GDX container. It uses the “ConvertGtapAgg.jar” to read the content of the “agg” file with the aggregation information used by GTAPAgg to generate definitions with long texts which are temporarily outputted into “agg.gdx”.

On demand, the “filter.gms” program processes the inputted data to remove small values. The result from these step are stored in the “data” directory.

The GDX files generated from “loadGTAPAgg.gms” provide the input to actual model runs with “com_.gms”. The GAMS code initializes all variables to benchmark values and starts the solver. That model start should basically need no iterations and lead to zero infeasibilities, it should prove that the model’s parameters are correctly set up to replicate the benchmark. Next, the user chosen shock file is read and changes to parameters introduced. Afterwards, the model is solved for the shock.

9.3.4 Post-model processing

While the processes described above are more or less identical to the original code of Dominique and Van der Mensbrughe and Tom Rutherford, the post-model processing was added to allow using the exploitation part of GGIG. The file “report.gms” stores the results back into a SAM like structure, e.g. consumer prices

\[
p_{\text{results}}(r, 'P', i, 'hou', 'dom') = p_{\text{dc}.1}(i,r);
\]

The “p_results” parameter is stored in a gdx file and later read by the interface for exploitation. It is generally organized as follows:

- First dimension: regions, including a world aggregated stored under “wor”
- Second dimension: tables for values “V”, quantities “Q”, prices “P”, tax rate “T” and tax income “G”
- Third dimension: commodities, factors
- Fourth dimension: institutions, sectors
- Fifth dimension: origins / destinations
- Sixth dimension: base, check or shock

Based on the flexible aggregation used in GTAP, the sets used for regions, sectors and factors are run specific and depend on the data set loaded.

The information about how the output is logically structured is also inputted in the GGIG definition file “gtapInGams.xml”:

The “report.gms” program also performs aggregations, e.g. to total use:

```plaintext
*  --- aggregate over origins (domestic and imported) to totals
*  set agg(PUV) / P,U,U /;

*  --- aggregate to total use
*  set useCols / set.i,inp,geo,intTrs,set.s,inv /;

  p_results(r,agg.i,"use",oris) = sum(useCols, p_results(r,agg.i,useCols,oris));
```

Average prices and tax rates are calculated afterwards:

```plaintext
  p_results(r,"P","i","use",oris) $ p_results(r,"Q","i","use",oris)
  = p_results(r,"P","i","use",oris) / p_results(r,"Q","i","use",oris);

  p_results(r,"P","i","use",oris) $ p_results(r,"P","i","use",oris)
  = p_results(r,"P","i","use",oris) / p_results(r,"P","i","use",oris);
```

The “report.gms” programs also stores meta-information on the run on the cube, such as the number of sectors, regions and factors; model size and solution status, and about how factor mobility is modeled:
That approach differs considerably from the way “runGTAP” allows to exploit results. For a formal discussion on these differences, see Britz 2014 and Britz et al. 2014. The “equation and variable” viewer, discussed above, allows views on the variables, equations and related parameters, more similar to the “runGTAP” exploitation tools.

9.3.5 Substitution of variables based on macros

With highly detailed SAMs, the number of variables and equations could reach several millions. Beside filtering, the possible to aggregate the Armington first nests, variable substitutions are used to reduce model size. We will in here briefly discuss some of these macros to ease reading the code. Generally, macros are named as the related variables with the prefix “m_”. The macro m_pa hence defines the variable p_a in the model, i.e. the Armington prices for the agents. As these is a complex case, it will be used here as the example.

The macro considers four different cases:

1. Both domestic and import demand is present (alpham and alphad is given). In that case, for agents which are not production sectors, the variable pa itself is used and defined in an equation (first line). Otherwise, another macro m_padef is used.

2. Only domestic demand is present. In that case, the price is equal to the domestic price, defined by the macro m_pdp.
(3) Only import demand is present, in which case only the import price defined by the macro \(m_{pmp} \) is used.

(4) No import and domestic shares are defined, a case found when the Melitz model is used.

The macro \(m_{padef} \) is the actual dual price aggregator:

\[
\begin{align*}
&\text{--- definition of Armington dual price aggregator from domestic and import price} \\
&\text{--- price for one, otherwise, use the supply} \\
&\text{--- add emission taxes for domestic use} \\
&\text{--- the macro \(m_{pmp} \) substitutes out the import prices} \\
&\text{--- add emission taxes for domestic use} \quad \text{--- the macro \(m_{pmp} \) substitutes out the import prices} \\
&\text{--- the macro \(m_{pmp} \) substitutes out the import prices} \\
&\text{--- the macro \(m_{pmp} \) substitutes out the import prices} \\
&\text{--- the macro \(m_{pmp} \) substitutes out the import prices} \\
&\text{--- the macro \(m_{pmp} \) substitutes out the import prices} \\
\end{align*}
\]

The domestic price macro \(m_{pdp} \) is defined as follows, i.e. applies taxes to the domestic price, again defined via the macro \(m_{domPrice} \). As taxes are usually fixed, it will in most cases simply remove a linear equation by substitution:

\[
\begin{align*}
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
&\text{--- add emission taxes for domestic use} \\
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
&\text{--- the macro \(m_{pdp} \) substitutes out the domestic sales prices: with an infinite CET for exports, use the supply} \\
\end{align*}
\]

The macro for domestic price reflects if a CET approach is used on the supply side. If the CET is infinite, the supply price \(ps \) is used directly, otherwise the domestic sales prices \(pd \) is used (we refrain from a discussion of the details of the Melitz model):

\[
\begin{align*}
&\text{--- the macro \(m_{domPrice} \) substitutes out the supply prices} \\
&\text{--- add emission taxes for domestic use} \\
&\text{--- the macro \(m_{domPrice} \) substitutes out the supply prices} \\
&\text{--- the macro \(m_{domPrice} \) substitutes out the supply prices} \\
&\text{--- the macro \(m_{domPrice} \) substitutes out the supply prices} \\
&\text{--- the macro \(m_{domPrice} \) substitutes out the supply prices} \\
\end{align*}
\]

The macro for the import price \(m_{pmp} \) is defined as follows, as for the domestic prices, it considers taxes on the import price \(pmt \)

\[
\begin{align*}
&\text{--- the macro \(m_{pmp} \) substitutes out the import prices} \\
&\text{--- add emission taxes for domestic use} \\
&\text{--- the macro \(m_{pmp} \) substitutes out the import prices} \\
\end{align*}
\]

A large set of equations is dropped by substituting out prices relating to bi-lateral trade flows. The basis free-on-board price for products not treated a la Melitz are defined via a macro \(mm_{pefob} \) as follows:
As seen, beside considering export taxes, the macro reflects which offer price to use depending on whether a CET is present or not.

The final macro used in the model considers if the product is treated a la Melitz or not:

```gams
$macro n_pmcif(r,i,rp,t) {
   \[1 + \text{exptx}(r,i,rp,t) + \text{etax}(r,i,t)\]
   \[\text{psFlag}(r,i,"\text{pmcif}\})\]
   \[\text{pmcif}(r,i,rp,t) \text{ otherwise}\]
}
```

That macro is subsequently used to define based on the macro m_pmcif the cif price, taking the transport margins and exchange rates into account:

```gams
$macro n_pmcif(r,i,rp,t) {
   \[\text{pmcif}(r,i,rp,t) = \text{psFlag}(r,i,"\text{pmcif}\})\]
   \[\text{pmcif}(r,i,rp,t) \text{ otherwise}\]
}
```

9.3.6 Exploitation and flexible aggregation

The exploitation is based on views in the multi-dimensional cube defined in $p_results$. Several such cubes representing different counter-factual runs (plus typically a benchmark) can be loaded simultaneously in the viewer. The views are defined in “CgeboxTables.xml”. As the set of sectors, regions and factors can differ from run to run, “report.gms” generates a XML file “generated.xml” which that information, e.g. for the products:

```gams
loop(i,)
   put "\n   "d:6 '</product>' /;
   put "d:6 '</itemName>'+i.t"d(1),"d:6 '</itemName>' /;
   put "d:6 '</key>'+i.t"d(1),"d:6 '</key>' /;
   put "d:6 '</sel>'+i.t"d(1),"d:6 '</sel>' /;
   put "d:6 '</product>' /;
end;
```

That file is included into the view definitions at run time.

In order to allow the viewer to work with maps, a co-ordinate set of individual countries is stored in “GUWworld.zip”. The standard case of GGIG applications are fixed lists of regional code and matching coordinate set which link each regional id to a list of polygons. The flexible regional aggregation in GTAP required a more flexible approach. The XML-definition of a view can register for a region a list of components under the tag “<disagg>”:
The individual code listed under “<disagg>” indicate the regional IDs used in the coordinate set. In the case of GTAP, these are codes for individual countries. The actual mapping between the aggregates used in the current model instance and the GTAP regions is read from an “agg”-file; the mapping between the GTAP regions code in the data base and the individual country ids is defined in “model\map_regions.gms”, e.g.

```
rrmap("BRN","XSE") = YES;
rrmap("HKG","XSE") = YES;
```

That file should be currently set-up to work with GTAP version 8. Other versions require an update of the mappings, as the list of GTAP regions might differ.

A first view reports the meta-information on the model. It is here used as a first example for the XML based definition of views. Basically, each view can define filters in the different dimension. The filters end with “sel” and start with the logical name of a dimension. To give an example: where normally information on a sector or institution would be stored (fourth dimension, the “activityDim”), the label “tots” is used. It is chosen in the filter below based on a regex expression:

```
<activitySel>tots_REGEX</activitySel>
```

Another example provides the table for intermediate demand. Here all products and sectors are selected; instead of a regex expression, the pre-defined lists found in “generated.xml” are used:
Details on how views can be defined can be found in GGIG programming guide, Britz 2010b.

Detail on simulated value of variables found in the Melitz module can be found in two tables under the “Trade group” as shown below:

<table>
<thead>
<tr>
<th>World</th>
<th>All firms entered</th>
<th>All firms operating</th>
<th>Variable cost price</th>
<th>Fix cost price</th>
<th>General fixed cost</th>
<th>Bi-lateral fixed cost</th>
<th>Variable cost per unit</th>
<th>Bi-lateral fixed cost per unit</th>
<th>Variable cost per unit</th>
<th>Bi-lateral fixed cost per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>0.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>5217.96</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
</tr>
<tr>
<td>Europe 28</td>
<td>1.00 0.00</td>
<td>0.04 1.00</td>
<td>0.04 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway, Switzerland</td>
<td>1.00 0.00</td>
<td>0.51 1.00</td>
<td>0.51 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States of America</td>
<td>1.00 0.00</td>
<td>0.97 1.00</td>
<td>0.97 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>1.00 0.00</td>
<td>0.61 1.00</td>
<td>0.61 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe 28</td>
<td>1.00 0.00</td>
<td>0.01 1.00</td>
<td>0.01 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>0.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASEA 10</td>
<td>1.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OtherOECD</td>
<td>1.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU Mediterranean partners</td>
<td>1.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low income</td>
<td>0.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest of world</td>
<td>1.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>World</td>
<td>0.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe 28</td>
<td>1.00 0.00</td>
<td>0.00 1.00</td>
<td>0.00 1.00</td>
<td>1654.72</td>
<td>457.21</td>
<td>2600.60</td>
<td>0.14 0.04</td>
<td>0.66 1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3.7 Main programs when solving a shock and integration of modules

The main driver program “com_.gms” can be roughly broken into three major blocks:

I. Benchmark set-up: That first block deals with loading the data and parameters and setting up the model such that it replicates the benchmark.
 a. The information about what files, extensions and modules to use and further detail on the model run is read from “com_inc.gms”, generated by the GUI. As a next step, the
“buildloagGTAP_agg.gms” reads the global SAM and related parameters and initialized core sets (products, activities, agents, households etc.). These sets are either directly read from the data set or are defined by run specific file such as the household types present in the myGTAP module.

b. Next, the equation system is set-up. The core equations for the standard GTAP model plus equations to host extensions are found in “model.gms” along with the necessary declarations of variables and parameters. According to the modules in use, additional equations are loaded in from module definitions which might replace equations from the standard GTAP model.

c. Based on that information, the calibration step in “cal.gms” initializes all variables for the benchmark and calculates parameters such as the share parameters for CES functions. The different modules as the GTAP-Melitz extension have their own calibration programs which are included on demand.

II. The second block comprises the model solve.

a. First, all variables are copied from t-1 to t if not the benchmark test is run.

b. Next, if not in benchmark check, the shock file is executed which hence can either use the results from t-1 (recursive dynamics) and/or benchmark results.

c. Followed by that step is the definition of bounds for the variable which can include fixing depending on the closures. Again, module specific includes will initialize bounds e.g. for GTAP-AGR.

d. Next, the current year is solved. If that is a benchmark solve, it will only build the equation system and does not allow the solver to improve the model (iterlim=0). That step should yield a total sum of infeasibilities < 1.E-4, otherwise, probably, some error in the benchmarking has occurred. In a more solve, pre-solve steps for the individual regions might be added. The model can attempt several solve and fix variables at their lower (tiny) bounds in CNS/NLP mode.

III. Reporting

a. The reporting block will in the simplest case only store all variable and parameters to a GDX.

b. If output to the GUI is selected, the variables and parameters are mapped onto one multi-dimensional parameter p_results which can be inspected by the GUI (see above), performed by “postmodel\mapToResults”. In that case, a XML file will be generated which comprises the list of products, activities etc. for use with the exploitation tools.
10. References

Domínguez, I. P., Britz, W., & Gopalakrishnan, B. N. Post-model Analysis in large-scale models: the examples of Aglink-Cosimo, CAPRI and GTAP, Paper presented at 2012 GTAP conference.
