Use of economic modelling in agricultural policy

Wolfgang Britz, Peter Witzke
Institute for Food and Resource Economics, University Bonn
Types of modelling applications
Types of models used
Institutional solutions to host models
Overview on CAPRI
Examples for applications
Do results matter for policy?
Summary and conclusion
- **Scoping**: What are possible future developments? (e.g. study “SCENAR 2020” or IPCC Climate Change scenarios)

- **Ex-ante impact assessment** of planned policy changes, mandatory for EU Commission if larger budget impact (e.g. recent legal proposal for Common Agricultural Policy - CAP 2014-2020)

- **Ex-post evaluation** of past policies, in the meantime mandatory (e.g. regular tenders by DG-AGRI)
Focus here on Europe and Common Agricultural Policy (CAP)

CAP changes typically provoke impacts
(at least potentially)
- on prices => equilibrium models \([\text{supply}=\text{demand}=f(\text{prices})]\)
- on trade => global models
- across EU, but not uniformly => at least detail at country level

⇒ Market entry costs for new models are quite high
(data and parameter requirements due to EU/global coverage, IT infrastructure)

⇒ Relative small set of models available, not much movement in market …
Equilibrium models:

- **Single market models**
 - For prices, quantities, policy in single market (or a few)
 - e.g. Banana model (G Anania), Dairy model (V Requillart) ..

- **Multi-Commodity Models**
 - Equations for many agricultural markets
 - e.g. “AGMEMOD”, “AGLINK”, “CAPRI”, “ESIM”, “GLOBIOM”

- **Computable General Equilibrium (CGE) models**
 - for all markets in whole economy plus budget constraints
 - e.g. “GTAP” variants like “MAGNET”, “MIRAGE”, “GLOBE”, regional CGEs in CAPRI
Equilibrium models possible linked to

- more dis-aggregated supply models (can be in-built as in CAPRI), “Aropaj”, “RAUMIS”, “FARMIS” …
- bio-physical models/components e.g. Dutch model “INTEGRATOR” for nitrogenous emissions, post model link of CAPRI to “DNDC“
- land use models:
 - CLUE-S (P Verbourg)
 - GLOBIOM (P Havlik)
- external studies used for baseline
 - CAPRI uses several sources (AGLINK, GLOBIOM…)
 - Large agencies often combine several inhouse models (IFPRI, FAO, LEI, EU Commission)
Tool may be hosted in
- in administration or government sponsored agency
 - ESIM model used by DG-AGRI (in the past)
 - Models used by ERS (USA), JRC (Europe), INRA (France), TI (Germany)
- in independent institution,
 - long-term contracts or
 - Case by case tenders

Viewpoints:
- Development versus maintenance
- Control over results
- Response time / transaction costs
- Synergies / antagonism if several models
Developed since 1997, operational and maintained since 2000, financed to a larger extent by EU framework programs.

Comparative-static (i.e. no description of path of adjustment), deterministic.

Consistent combination of different sub-models/components:
- Global trade model
- European supply models
- Regional CGEs
- Post-model processing (environmental indicators, welfare analysis, CAP budget, energy use indicator)
- Spatial down-scaling to 1x1 km grid cells and link to bio-physical models.
• Global: 40 trade blocks and ca. 80 countries
• Spatial: “Armington” assumption
 (=> goods differ by origin)
• Detailed trade policy

• Non-linear programming models for 280 regions or 1,900 farm types
• Profit maximization under constraints
• => detailed policy representation
 (premiums, quotas…)
• … and links to environment

Britz/Witzke: Use of economic modelling in agricultural policy, 18.04.2013, Krško
Data from Eurostat, FAOstat, EU Commission (FADN) …

Technical solution:
- Data transformations and simulation in GAMS
- User interface in Java (steering, tables/graphs/maps)
- Server based software versioning system (SVN) for exchange of data and computer code in network

Institutional model
- Open source/access, …
- Network of users/developers across Europe, including EU Commission services
Examples of CAPRI applications

- **Research project applications:**
 - Selection mainly to give a good illustration of model development
 - Relevant example may raise awareness of potential users
 - But no influence on scenario design: leave or take option for policy

- **Tendered applications:**
 - First one for CAPRI 6 years after development started and 3 years after first operational version
 - CAP Mid Term Review, sugar market reform, some contributions to ex post evaluations
 - Recent years:
 - Ongoing CAP reforms (premium, market organizations)
 - Free-trade agreements
 - Agri-Environmental interactions
 - Study on ban of GMOs (genetically modified organisms) by LEI
 - Climate related studies

Britz/Witzke: Use of economic modelling in agricultural policy, 18.04.2013, Krško
Example: SCENAR 2020 scoping study

- Scenario study => no immediate policy under investigation, only broad options for EU policy:
 - “Baseline”, “Regionalisation”, “Liberalisation”
 - Research environment better than administration for scenario approach

- Modelling suite
 - LEITAP-IMAGE (global CGE), ESIM (ag baseline, biofuels), CAPRI (CAP, NUTS2), CLUE-S (complete land use model)

- Plus statistical analysis, cluster analysis, SWOT analysis for regions

- Results from modelling chain at national level but rural problems (beyond agriculture) need further analysis
 - Picked up in project CAPRI-RD with regional CGEs
 - Other methodology also picked up in CAPRI trunk
 - Land supply curve
 - Implementation of Rural Development policies

Britz/Witzke: Use of economic modelling in agricultural policy, 18.04.2013, Krško

CAPRI selected as it offered
• rich detail in describing the CAP pillar I instruments (premiums and market price support)
• full EU coverage
• farm type and regional dis-aggregation (not available with OECD in-house tools)

What has been the effect of decoupling?
• Overall limited effects on allocation
• But transfer efficiency increased
Example: DEFRA study on drastic reform

- **Background:**
 - UK Department for Environment, Food and Rural Affairs (DEFRA) in favor of drastic reform for CAP 2013-2020
 - But what about land abandonment in marginal areas?

Combination of CAPRI and Land Use Cover Change Model (CLUE-S) used, CAPRI expanded to simulate shrinking and expansion of agricultural area

- **Main findings:**
 - At country level reduction in land use between 6 (UK) and 15% (Greece), larger effects for marginal areas
 - Price increases for outputs partially offset loss of subsidies
 - Environmental impacts overall reduced, but higher intensity on remaining agricultural land
Recent study by EU Joint Research Centre on Free Trade Agreement with Mercosur

- Combined CGE (GLOBE) and multi-commodity model (CAPRI) application
- Explicit representation of trade policies in CAPRI permits realistic analysis
- Quite detailed scenario definition (tariffs and tariff rate quotas, sensitive products…)
- Equally interest in regional effects, e.g. will freer trade in beef with South-America lead to heavy income losses in mountainous regions specialized in suckler cows?
Background and motivation:
- Searchinger et al 2008, Science: Pay back period of ethanol from US maize is 167 years, because indirect land use change (ILUC) effects release huge quantities of carbon
- Stimulated criticism and numerous studies
- But also marks turning point in biofuel enthusiasm

- ILUC effects had to be investigated according to RED
- With several delays finally presented Nov 2011
- State of the art CGE model MIRAGE:
 - Endogenous yields, by-products, disaggregated oilseeds, substitution of cropland, pasture, forest, income elasticities updated on baseline, Monte Carlo for parameters...
- => ILUC factors for policy package and by crop (gCO2/MJ)
Do results matter? (1)

- Weak empirical evidence (no systematic with and without observations, interviews likely to provoke strategic answers ...)

- Need to look at historical examples, #1: CAP reform process (from price to coupled to decoupled support) as of 1992
 - Standard welfare analysis did back up Commission position
 - But this argument was already made for decades by Josling 1973, Koester/Tangermann 1977
 - Perhaps more relevant: stabiliser policy unable to meet income goals
 - Inviting to use economic model results as a justification for reform proposals
 - But sometimes apparently studies are effective: Choice of Ireland for complete decoupling in view of farm income benefits
Example #2 Sugar market reform 2006

- Several preceding studies have demonstrated the inefficiency of the Sugar Common Market Organisation and the need for reform
- Why 2006 after decades of stability?
 - Everything But Arms agreement
 - WTO panel decision 2005 (no C-sugar exports),
- But unclear whether Commission has defended its sugar policy as good as possible in panel
 - perhaps already convinced by need for reform?
- But choice of reduced intervention price clearly informed by earlier studies
- Could be a general phenomenon: quantitative analysis for choice of details in implementation
Example #3: Increasing weight for environmental issues in CAP:
- Several criticisms of the CAP from academia and non-governmental organisations
- Therefore cross-compliance and decoupling?
- Could also be political vehicle to rescue CAP support
- Some econ arguments are being picked up
 - Details of crop diversity requirements

Example #4: Any effect of ILUC studies on policy?
- Yes for Searchinger et al 2007!
- Unclear for MIRAGE study in view of Commission Impact Assessment (Oct 2012):
 - Option D (ILUC Factors) discarded because
 - Devalution of existing investments in biofuel industry
 - RED target of 10% in danger (and a past EU decision cannot be wrong)
 - Preferred option E: Cap for conventional biofuels in meeting RED target at 50% => safeguard for past investments (and past policies)
Conclusions (1)

- Overall: direct influence of economic modelling is open or unclear
 - Probably highest for fine-tuning of policies
- But indirect effect through training of economic thinking for staff concerned with policy design
- Modelling may serve to structure the debate on policy issues
 - Example: Impacts of rural development support
 - To quantify regional CGE layer of CAPRI (for example)
 - Forces to interpret each measure in terms of the rigorous model framework

